Chemometric analysis applied to
1H NMR
FFA value
FTIR
PCA
PLSR
degree of unsaturation
red fruit oil
Journal
Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
08
11
2022
received:
08
09
2022
accepted:
21
11
2022
medline:
23
10
2023
pubmed:
13
12
2022
entrez:
12
12
2022
Statut:
ppublish
Résumé
Red fruit oil (RFO) is a natural product extracted from Pandanus conoideus Lam. fruit, a native plant from Papua, Indonesia. Recent studies indicate that RFO is popularly consumed as herbal medicine. Therefore, the quality of RFO must be assured. This study aimed to develop a chemometric analysis applied to Forty samples consisting of one crude RFO, thirty-three commercial RFOs, and three oils as blends, including olive oil, virgin coconut oil, and black seed oil, were analysed by The essential signals for modelling the degree of unsaturation are the signal at δ = 5.37-5.27 ppm ( Chemometric analysis applied to
Substances chimiques
Plant Oils
0
Olive Oil
0
Fatty Acids, Nonesterified
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
788-799Subventions
Organisme : Lambung Mangkurat University
ID : 3894/UN8/KP/2019
Informations de copyright
© 2022 The Authors. Phytochemical Analysis published by John Wiley & Sons Ltd.
Références
Mun'im A, Andrajati R, Susilowati H. Tumorigenesis inhibition of water extract of red fruit (Pandanus conoideus lam.) on Sprague-Dawley rat female induced by 7,12-dimetilbenz(a)antrasen (DMBA). Indon J Pharm Sci. 2006;3:153-161. doi:10.7454/psr.v3i3.3407
Surono I, Endaryanto TA, Nishigaki T. Indonesian biodiversities from microbes to herbal plants as potential functional foods. J Fac Agric Shinshu Univ. 2008;44(1.2):23-27.
Khiong K, Adhika OA, Chakravitha M. Inhibition of NF-κB pathway as the therapeutic potential of red fruit (Pandanus conoideus lam.) in the treatment of inflammatory bowel disease. JKM (Jurnal Kedokteran Maranatha). 2009;9(1):69-75.
Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W. Antioxidant activity, total phenolic, total flavanoid of extracts and fractions of red fruit (Pandanus conoideus lam). Int Food Res J. 2010;17:97-106.
Rohman A, Sugeng R, Che Man YB. Characterizaton of red fruit (Pandanus conoideus lam) oil. Int Food Res J. 2012;19(2):563-567.
Sarungallo ZL, Hariyadi P, Andarwulan N, Purnomo EH. Characterization of chemical properties, lipid profile, total phenol and tocopherol content of oils extracted from nine clones of red fruit (Pandanus conoideus). J Natural Sci. 2015;49(2):237-250.
Triyasmono L, Riyanto S, Rohman A. Determination of iodine value and acid value of red fruit oil by infrared spectroscopy and multivariate calibration. Int Food Res J. 2013;20(6):3259-3263.
Ropodi AI, Panagou EZ, Nychas GJE. Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends Food Sci Technol. 2016;50:11-25. doi:10.1016/j.tifs.2016.01.011
Rohman A, Ghazali MAB, Windarsih A, Irnawati RS, Yusof FM, Mustafa S. Comprehensive review on application of FTIR spectroscopy coupled with Chemometrics for authentication analysis of fats and oils in the food products. Molecules. 2020;25(22):5485. doi:10.3390/molecules25225485
Monakhova YB, Kuballa T, Lachenmeier DW. Chemometric methods in NMR spectroscopic analysis of food products. J Anal Chem. 2013;68(9):755-766. doi:10.1134/S1061934813090098
Alcantara GB, Honda NK, Ferreira MM, Ferreira AG. Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples. Anal Chim Acta. 2007;595(1-2):3-8. doi:10.1016/j.aca.2007.03.032
Becht A, Schollmayer C, Monakhova YB, Holzgrabe U. Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis. Anal Bioanal Chem. 2021;413(11):3107-3118. doi:10.1007/s00216-021-03249-z
Roberto de Alvarenga Junior B, Lajarim Carneiro R. Chemometrics approaches in forced degradation studies of pharmaceutical drugs. Molecules. 2019;24(3804):1-24 (Basel, Switzerland). NLM (Medline). doi:10.3390/molecules24203804
Ingallina C, Cerreto A, Mannina L, et al. Extra-virgin olive oils from nine italian regions: An 1H NMR-chemometric characterization. Metabolites. 2019;9(4):1-12. doi:10.3390/metabo9040065
Giese E, Rohn S, Fritsche J. Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data. Anal Bioanal Chem. 2019;411(26):6931-6942. doi:10.1007/s00216-019-02063-y
Rodionova OY, Pomerantsev AL. Chemometrics: achievements and prospects. Russ Chem Rev. 2006;75(4):271-287. doi:10.1070/rc2006v075n04abeh003599
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497-509. doi:10.1016/s0021-9258(18)64849-5
Triyasmono L, Schollmayer C, Schmitz J, et al. Simultaneous determination of the saponification value, acid value, Ester value, and iodine value in commercially available red fruit oil (Pandanus conoideus, lam.) using 1H qNMR spectroscopy. Food Anal Methods. 2022;1-13. doi:10.1007/s12161-022-02401-4
Holzgrabe U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc. 2010;57(2):229-240. doi:10.1016/j.pnmrs.2010.05.001
Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627-1639. doi:10.1021/ac60214a047
Casale M, Oliveri P, Casolino C, et al. Characterisation of PDO olive oil chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Anal Chim Acta. 2012;712:56-63. doi:10.1016/j.aca.2011.11.015
Schönberger T, Monakhova YB, Lachenmeier DW, Walch S, Kuballa T, (NEXT) -NMR working group. EUROLAB Technical Report 01/2015. Guide to NMR Method Development and Validation-Part II: Multivariate data analysis. 2016; (01):1-20. 10.13140/RG.2.1.4265.1289
Sousa SAA, Magalhães A, Ferreira MMC. Optimized bucketing for NMR spectra: three case studies. Chemom Intel Lab Syst. 2013;122:93-102. doi:10.1016/j.chemolab.2013.01.006
Vu TN, Valkenborg D, Smets K, et al. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinform. 2011;12(405):1-14. doi:10.1186/1471-2105-12-405
Jellema RH, Brown SD, Tauler R, Walczak B. Comprehensive Chemometrics in: Variable shift and alignment. In: Chemical and biochemical data analysis. Vol.2. Oxford: Elsevier; 2009:85-108. doi:10.1016/B978-044452701-1.00104-6
Gulmine JV, Janissek PR, Heise HM, Akcelrud L. Polyethylene characterization by FTIR. Polym Test. 2002;21(5):557-563. doi:10.1016/S0142-9418(01)00124-6
Guillén MD, Ruiz A. Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur J Lipid Sci Technol. 2003;105(11):688-696. doi:10.1002/ejlt.200300866
Parker T, Limer E, Watson AD, Defernez M, Williamson D, Kemsley EK. 60 MHz 1HNMR spectroscopy for the analysis of edible oils. TrAC - Trends Anal Chem. 2014;57(100):147-158. doi:10.1016/j.trac.2014.02.006
An Z, Jiang X, Xiang G, Fan L, He L, Zhao W. A simple and practical method for determining iodine values of oils and fats by the FTIR spectrometer with an infrared quartz Cuvette. Anal Methods. 2017;9(24):3669-3674. doi:10.1039/C7AY00727B
Lievens C, Mourant D, He M, Gunawan R, Li X, Li CZ. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel. 2011;90(11):3417-3423. doi:10.1016/j.fuel.2011.06.001
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intel Lab Syst. 1987;2(1-3):37-52p. doi:10.1007/978-0-387-87811-9_2
Jović O, Smolić T, Primožič I, Hrenar T. Spectroscopic and Chemometric analysis of binary and ternary edible oil mixtures: qualitative and quantitative study. Anal Chem. 2016;88(8):4516-4524. doi:10.1021/acs.analchem.6b00505
Rohman A, Irnawati, Erwanto Y, et al. Virgin coconut oil: extraction, physicochemical properties, biological activities and its authentication analysis. Food Rev Int. 2021;37(1):46-66. doi:10.1080/87559129.2019.1687515
Lutterodt H, Luther M, Slavin M, et al. Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils. LWT - Food Sci and Technology. 2010;43(9):1409-1413. doi:10.1016/j.lwt.2010.04.009
De la Mata P, Dominguez-Vidal A, Bosque-Sendra JM, Ruiz-Medina A, Cuadros-Rodríguez L, Ayora-Cañada MJ. Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control. 2012;23(2):449-455. doi:10.1016/j.foodcont.2011.08.013
Popescu R, Costinel D, Dinca OR, Marinescu A, Stefanescu I, Ionete RE. Discrimination of vegetable oils using NMR spectroscopy and chemometrics. Food Control. 2015;48:84-90. doi:10.1016/j.foodcont.2014.04.046
Truzzi E, Marchetti L, Benvenuti S, Ferroni A, Rossi MC, Bertelli D. Novel strategy for the recognition of adulterant vegetable oils in essential oils commonly used in food industries by applying 13C NMR spectroscopy. J Agric Food Chem. 2021;69(29):8276-8286. doi:10.1021/acs.jafc.1c02279
Vlahov G. Application of NMR to the study of olive oils. Prog Nucl Magn Reson Spectrosc. 1999;35(4):341-357. doi:10.1016/S0079-6565(99)00015-1
Alexandri E, Ahmed R, Siddiqui H, Choudhary MI, Tsiafoulis CG, Gerothanassis IP. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules. 2017;22(10):1-71. doi:10.3390/molecules22101663