L1CAM is required for early dissemination of fallopian tube carcinoma precursors to the ovary.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
12 12 2022
Historique:
received: 22 04 2020
accepted: 29 11 2022
entrez: 12 12 2022
pubmed: 13 12 2022
medline: 15 12 2022
Statut: epublish

Résumé

Most ovarian high-grade serous carcinomas (HGSC) arise from Serous Tubal Intraepithelial Carcinoma (STIC) lesions in the distal end of the fallopian tube (FT). Formation of STIC lesions from FT secretory cells leads to seeding of the ovarian surface, with rapid tumor dissemination to other abdominal structures thereafter. It remains unclear how nascent malignant cells leave the FT to colonize the ovary. This report provides evidence that the L1 cell adhesion molecule (L1CAM) contributes to the ability of transformed FT secretory cells (FTSEC) to detach from the tube, survive under anchorage-independent conditions, and seed the ovarian surface. L1CAM was highly expressed on the apical cells of STIC lesions and contributed to ovarian colonization by upregulating integrins and fibronectin in malignant cells and activating the AKT and ERK pathways. These changes increased cell survival under ultra-low attachment conditions that mimic transit from the FT to the ovary. To study dissemination to the ovary, we developed a tumor-ovary co-culture model. We showed that L1CAM expression was important for FT cells to invade the ovary as a cohesive group. Our results indicate that in the early stages of HGSC development, transformed FTSECs disseminate from the FT to the ovary in a L1CAM-dependent manner.

Identifiants

pubmed: 36509990
doi: 10.1038/s42003-022-04314-8
pii: 10.1038/s42003-022-04314-8
pmc: PMC9744873
doi:

Substances chimiques

Neural Cell Adhesion Molecule L1 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1362

Subventions

Organisme : NCI NIH HHS
ID : P50CA228991
Pays : United States
Organisme : NCI NIH HHS
ID : P50CA217685
Pays : United States
Organisme : NCI NIH HHS
ID : F32CA221093
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J. Cancer 136, E359–E386 (2015).
doi: 10.1002/ijc.29210
Kroeger, P. T. Jr. & Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 29, 26–34 (2017).
doi: 10.1097/GCO.0000000000000340
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA: A cancer J. Clinicians. 67, 7–30 (2017).
Wild CP, W. E., Stewart BW. Vol. Available from: http://publications.iarc.fr/586 . (ed International Agency for Research on Cancer) (2020).
Karst, A. M. & Drapkin, R. Ovarian cancer pathogenesis: a model in evolution. J. Oncol. 2010, 932371 (2010).
doi: 10.1155/2010/932371
Vaughan, S. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725, https://doi.org/10.1038/nrc3144 (2011).
doi: 10.1038/nrc3144
Eckert, M. A. et al. Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube. Cancer Disco. 6, 1342–1351 (2016).
doi: 10.1158/2159-8290.CD-16-0607
Kurman, R. J. & Shih Ie, M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer–shifting the paradigm. Hum. Pathol. 42, 918–931 (2011).
doi: 10.1016/j.humpath.2011.03.003
Labidi-Galy, S. I. et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 8, 1093 (2017).
doi: 10.1038/s41467-017-00962-1
McDaniel, A. S. et al. Next-Generation Sequencing of Tubal Intraepithelial Carcinomas. JAMA Oncol. 1, 1128–1132 (2015).
doi: 10.1001/jamaoncol.2015.1618
Meserve, E. E. K. et al. Frequency of “incidental” serous tubal intraepithelial carcinoma (STIC) in women without a history of or genetic risk factor for high-grade serous carcinoma: A six-year study. Gynecol. Oncol. 146, 69–73 (2017).
doi: 10.1016/j.ygyno.2017.04.015
Seidman, J. D., Yemelyanova, A., Zaino, R. J. & Kurman, R. J. The fallopian tube-peritoneal junction: a potential site of carcinogenesis. Int J. Gynecol. Pathol. 30, 4–11 (2011).
doi: 10.1097/PGP.0b013e3181f29d2a
Wu, R. C. et al. Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. J. Pathol. 248, 41–50 (2019).
doi: 10.1002/path.5219
Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007).
doi: 10.1002/path.2091
Mehra, K. K. et al. The impact of tissue block sampling on the detection of p53 signatures in fallopian tubes from women with BRCA 1 or 2 mutations (BRCA+) and controls. Mod. Pathol. 24, 152–156 (2011).
doi: 10.1038/modpathol.2010.171
Altevogt, P., Doberstein, K. & Fogel, M. L1CAM in human cancer. Int J. Cancer 138, 1565–1576 (2016).
doi: 10.1002/ijc.29658
Bondong, S. et al. Prognostic significance of L1CAM in ovarian cancer and its role in constitutive NF-kappaB activation. Ann. Oncol. 23, 1795–1802 (2012).
doi: 10.1093/annonc/mdr568
Agrawal, P. et al. A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell 31, 804–819 e807 (2017).
doi: 10.1016/j.ccell.2017.05.007
Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).
doi: 10.1038/s41556-018-0138-8
Haase, G., Gavert, N., Brabletz, T. & Ben-Ze’ev, A. A point mutation in the extracellular domain of L1 blocks its capacity to confer metastasis in colon cancer cells via CD10. Oncogene 36, 1597–1606 (2017).
doi: 10.1038/onc.2016.329
Ichikawa, T. et al. Clinical significance and biological role of L1 cell adhesion molecule in gastric cancer. Br. J. Cancer 121, 1058–1068 (2019).
doi: 10.1038/s41416-019-0646-8
Wang, Y. et al. C1QBP suppresses cell adhesion and metastasis of renal carcinoma cells. Sci. Rep. 7, 999 (2017).
doi: 10.1038/s41598-017-01084-w
Cancer Genome Atlas Research, N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
doi: 10.1038/ng.2764
Cancer Genome Atlas Research, N. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).
doi: 10.1038/nature10166
Hooda, J. et al. Early Loss of Histone H2B Monoubiquitylation Alters Chromatin Accessibility and Activates Key Immune Pathways That Facilitate Progression of Ovarian Cancer. Cancer Res. 79, 760–772 (2019).
doi: 10.1158/0008-5472.CAN-18-2297
Fuchs, G. & Oren, M. Writing and reading H2B monoubiquitylation. Biochim Biophys. Acta. 1839, 694–701 (2014).
doi: 10.1016/j.bbagrm.2014.01.002
Karst, A. M. et al. Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecol. Oncol. 123, 5–12 (2011).
doi: 10.1016/j.ygyno.2011.05.021
Novak, M. et al. Stathmin 1 and p16(INK4A) are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma. Gynecol. Oncol. 139, 104–111 (2015).
doi: 10.1016/j.ygyno.2015.07.100
Doberstein, K. et al. Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. Int. J. Cancer 136, E326–E339 (2015).
doi: 10.1002/ijc.29222
Fogel, M. et al. A standardized staining protocol for L1CAM on formalin-fixed, paraffin-embedded tissues using automated platforms. Int J. Biol. Markers. 29, e180–e183 (2014).
doi: 10.5301/jbm.5000055
Bijron, J. G. et al. Fallopian tube intraluminal tumor spread from noninvasive precursor lesions: a novel metastatic route in early pelvic carcinogenesis. Am. J. Surg. Pathol. 37, 1123–1130 (2013).
doi: 10.1097/PAS.0b013e318282da7f
Liu, J. F. et al. Establishment of Patient-Derived Tumor Xenograft Models of Epithelial Ovarian Cancer for Preclinical Evaluation of Novel Therapeutics. Clin. Cancer Res. 23, 1263–1273 (2017).
doi: 10.1158/1078-0432.CCR-16-1237
Karst, A. M. & Drapkin, R. Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nat. Protoc. 7, 1755–1764 (2012).
doi: 10.1038/nprot.2012.097
Karst, A. M. et al. Cyclin E1 Deregulation Occurs Early in Secretory Cell Transformation to Promote Formation of Fallopian Tube-Derived High-Grade Serous Ovarian Cancers. Cancer Res. 74, 1141–1152 (2014).
doi: 10.1158/0008-5472.CAN-13-2247
Yang-Hartwich, Y. et al. Ovulation and extra-ovarian origin of ovarian cancer. Sci. Rep. 4, 6116 (2014).
doi: 10.1038/srep06116
Kiefel, H. et al. L1CAM-integrin interaction induces constitutive NF-kappa B activation in pancreatic adenocarcinoma cells by enhancing IL-1 beta expression. Oncogene 29, 4766–4778, https://doi.org/10.1038/onc.2010.230 (2010).
doi: 10.1038/onc.2010.230
Iwanicki, M. P. et al. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. Jci Insight 1, https://doi.org/10.1172/jci.insight.86829 (2016).
Kenny, H. A. et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Invest. 124, 4614–4628 (2014).
doi: 10.1172/JCI74778
Burleson, K. M., Hansen, L. K. & Skubitz, A. P. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clin. Exp. Metastasis. 21, 685–697 (2004).
doi: 10.1007/s10585-004-5768-5
Mitra, A. K. et al. Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30, 1566–1576 (2011).
doi: 10.1038/onc.2010.532
Scalici, J. M. et al. Inhibition of alpha4beta1 integrin increases ovarian cancer response to carboplatin. Gynecol. Oncol. 132, 455–461 (2014).
doi: 10.1016/j.ygyno.2013.12.031
Doberstein, K. et al. L1-CAM expression in ccRCC correlates with shorter patients survival times and confers chemoresistance in renal cell carcinoma cells. Carcinogenesis 32, 262–270 (2011).
doi: 10.1093/carcin/bgq249
Gast, D. et al. L1 augments cell migration and tumor growth but not beta 3 integrin expression in ovarian carcinomas. Int. J. Cancer. 115, 658–665 (2005).
doi: 10.1002/ijc.20869
Nakaoka, H. J. et al. Mint3-mediated L1CAM expression in fibroblasts promotes cancer cell proliferation via integrin alpha 5 beta 1 and tumour growth. Oncogenesis 6, https://doi.org/10.1038/oncsis.2017.27 (2017).
Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013).
doi: 10.1016/j.ccr.2013.10.013
Jia, D. Y., Nagaoka, Y., Katsumata, M. & Orsulic, S. Inflammation is a key contributor to ovarian cancer cell seeding. Sci Rep-Uk 8, https://doi.org/10.1038/s41598-018-30261-8 (2018).
Ducie, J. et al. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nat. Commun. 8, 990 (2017).
doi: 10.1038/s41467-017-01217-9
Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).
doi: 10.1038/s43018-019-0006-x
Kiefel, H. et al. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr. 6, 374–384 (2012).
doi: 10.4161/cam.20832
Schafer, M. K. & Altevogt, P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol. Life Sci. 67, 2425–2437 (2010).
doi: 10.1007/s00018-010-0339-1
Valiente, M. et al. Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis. Cell 156, 1002–1016 (2014).
doi: 10.1016/j.cell.2014.01.040
Doberstein, K. et al. miR-21-3p is a positive regulator of L1CAM in several human carcinomas. Cancer Lett. 354, 455–466 (2014).
doi: 10.1016/j.canlet.2014.08.020
Fogel, M. et al. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362, 869–875 (2003).
doi: 10.1016/S0140-6736(03)14342-5
Wolterink, S. et al. Therapeutic Antibodies to Human L1CAM: Functional Characterization and Application in a Mouse Model for Ovarian Carcinoma. Cancer Res. 70, 2504–2515 (2010).
doi: 10.1158/0008-5472.CAN-09-3730
Casey, R. C. et al. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol. 159, 2071–2080 (2001).
doi: 10.1016/S0002-9440(10)63058-1
Casey, R. C. & Skubitz, A. P. CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin. Exp. Metastasis. 18, 67–75 (2000).
doi: 10.1023/A:1026519016213
Deng, B. Y. et al. Adrenomedullin expression in epithelial ovarian cancers and promotes HO8910 cell migration associated with upregulating integrin alpha 5 beta 1 and phosphorylating FAK and paxillin. J. Exp. Clin. Canc. Res. 31, https://doi.org/10.1186/1756-9966-31-19 (2012).
Sawada, K. et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha(5)-integrin, which is a therapeutic target. Cancer Res. 68, 2329–2339 (2008).
doi: 10.1158/0008-5472.CAN-07-5167
Serres, E. et al. Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene 33, 3451–3462 (2014).
doi: 10.1038/onc.2013.305
Dean, M. et al. Loss of PTEN in Fallopian Tube Epithelium Results in Multicellular Tumor Spheroid Formation and Metastasis to the Ovary. Cancers (Basel) 11, https://doi.org/10.3390/cancers11060884 (2019).
Kim, O. et al. In vivo modeling of metastatic human high-grade serous ovarian cancer in mice. PLoS Genet. 16, e1008808 (2020).
doi: 10.1371/journal.pgen.1008808

Auteurs

Kai Doberstein (K)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
Department of Gynecology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.

Rebecca Spivak (R)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Hunter D Reavis (HD)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Jagmohan Hooda (J)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA, USA.

Yi Feng (Y)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Paul T Kroeger (PT)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Sarah Stuckelberger (S)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Gordon B Mills (GB)

Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA.

Kyle M Devins (KM)

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Lauren E Schwartz (LE)

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Marcin P Iwanicki (MP)

Department of Bioengineering, Chemistry, Chemical Biology and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA.

Mina Fogel (M)

Central Laboratories, Kaplan Medical Center, Rehovot, Israel.

Peter Altevogt (P)

Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Ronny Drapkin (R)

Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. rdrapkin@pennmedicine.upenn.edu.
Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. rdrapkin@pennmedicine.upenn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH