Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets.


Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
12 Dec 2022
Historique:
received: 25 10 2022
revised: 25 11 2022
accepted: 03 12 2022
entrez: 23 12 2022
pubmed: 24 12 2022
medline: 27 12 2022
Statut: epublish

Résumé

tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.

Identifiants

pubmed: 36555394
pii: ijms232415756
doi: 10.3390/ijms232415756
pmc: PMC9778954
pii:
doi:

Substances chimiques

RNA, Transfer 9014-25-9
RNA 63231-63-0
Amino Acids 0
Amino Acyl-tRNA Synthetases EC 6.1.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

J Theor Biol. 2004 Jan 7;226(1):89-93
pubmed: 14637058
EMBO J. 1996 Jun 3;15(11):2843-9
pubmed: 8654382
Cell. 2001 Jan 26;104(2):191-3
pubmed: 11269237
J Mol Biol. 1982 Nov 25;162(1):201-17
pubmed: 6296405
Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62
pubmed: 18957446
J Mol Biol. 1968 Dec;38(3):367-79
pubmed: 4887876
Nucleic Acids Res. 2022 Feb 28;50(4):1815-1828
pubmed: 35137169
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5183-8
pubmed: 9144212
Science. 1988 Nov 4;242(4879):765-8
pubmed: 3055296
Int J Biol Macromol. 1994 Jun;16(3):153-8
pubmed: 7526895
J Mol Evol. 2005 Oct;61(4):524-30
pubmed: 16155749
J Theor Biol. 1992 Nov 21;159(2):199-214
pubmed: 1294846
Nature. 1982 Aug 5;298(5874):585-6
pubmed: 7099255
Cell. 1995 Jun 30;81(7):983-6
pubmed: 7600584
Nucleic Acids Res. 1993 Sep 25;21(19):4467-75
pubmed: 8233780
Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546-52
pubmed: 5218910
Int J Mol Sci. 2009 Jun 30;10(7):2921-2934
pubmed: 19742176
Trends Biochem Sci. 2001 Nov;26(11):653-6
pubmed: 11701323
Orig Life Evol Biosph. 1995 Jun;25(1-3):265-9
pubmed: 11536677
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8030-5
pubmed: 23630280
Orig Life Evol Biosph. 2003 Apr;33(2):199-209
pubmed: 12967267
Naturwissenschaften. 1981 Jun;68(6):282-92
pubmed: 7266675
J Theor Biol. 2000 Jan 21;202(2):129-44
pubmed: 10640433
J Mol Evol. 1992 Jun;34(6):471-7
pubmed: 1593640
J Mol Evol. 1976 Dec 31;9(1):59-72
pubmed: 1018332
J Mol Evol. 2015 Apr;80(3-4):143-61
pubmed: 25739364
Nature. 2009 May 14;459(7244):239-42
pubmed: 19444213
Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6729-34
pubmed: 8041690
Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8
pubmed: 7692438
Biochem Biophys Res Commun. 2021 Mar 12;544:81-85
pubmed: 33545497
Nature. 1996 May 2;381(6577):59-61
pubmed: 8609988
Nature. 2005 Feb 3;433(7025):537-41
pubmed: 15690044
Biol Direct. 2011 Feb 22;6:14
pubmed: 21342520
J Mol Evol. 2008 Jan;66(1):21-35
pubmed: 18058157
FEBS Lett. 2021 Apr;595(7):913-924
pubmed: 33460451
Phys Rev Lett. 2020 Jul 24;125(4):048104
pubmed: 32794805
Biol Chem. 2005 Sep;386(9):833-44
pubmed: 16164408
EMBO J. 1996 Jun 3;15(11):2834-42
pubmed: 8654381
Life (Basel). 2017 May 23;7(2):
pubmed: 28545255
Int J Mol Sci. 2018 Dec 12;19(12):
pubmed: 30545154
Biosystems. 1985;17(3):209-25
pubmed: 3888302
Annu Rev Biochem. 2005;74:179-98
pubmed: 15952885
J Mol Evol. 1995 Jul;41(1):1-9
pubmed: 7608982
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8298-303
pubmed: 20385807
RNA. 2007 Aug;13(8):1191-7
pubmed: 17556712
Nucleic Acids Res. 1998 Nov 15;26(22):5017-35
pubmed: 9801296
Nature. 1988 May 12;333(6169):117-8
pubmed: 3367984
Science. 1989 Dec 1;246(4934):1135-42
pubmed: 2479982
J Am Chem Soc. 2010 Nov 24;132(46):16677-88
pubmed: 21043502
Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11283-6
pubmed: 7972050
Biol Direct. 2007 May 31;2:14
pubmed: 17540026
Science. 2001 May 4;292(5518):883-96
pubmed: 11283358
Annu Rev Biochem. 1989;58:1029-49
pubmed: 2673006

Auteurs

Ilana Agmon (I)

Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

Articles similaires

Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Genome, Chloroplast Phylogeny Evolution, Molecular Ilex Microsatellite Repeats
Citrus Phenylalanine Ammonia-Lyase Stress, Physiological Multigene Family Phylogeny

Classifications MeSH