Effect of Buffers with Multiple Binding Sites on Calcium Waves.
Buffered calcium systems
Reaction-diffusion systems
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
31 12 2022
31 12 2022
Historique:
received:
29
06
2022
accepted:
02
11
2022
entrez:
31
12
2022
pubmed:
1
1
2023
medline:
4
1
2023
Statut:
epublish
Résumé
The existence and properties of intracellular waves of increased free cytoplasmic calcium concentration (calcium waves) are strongly affected by the binding and unbinding of calcium ions to a multitude of different buffers in the cell. These buffers can be mobile or immobile and, in general, have multiple binding sites that are not independent. Previous theoretical studies have focused on the case when each buffer molecule binds a single calcium ion. In this study, we analyze how calcium waves are affected by calcium buffers with two non-independent binding sites, and show that the interactions between the calcium binding sites can result in the emergence of new behaviors. In particular, for certain combinations of kinetic parameters, the profiles of buffer molecules with one calcium ion bound can be non-monotone.
Identifiants
pubmed: 36585964
doi: 10.1007/s11538-022-01109-0
pii: 10.1007/s11538-022-01109-0
pmc: PMC9805419
doi:
Substances chimiques
Calcium
SY7Q814VUP
Buffers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10Informations de copyright
© 2022. The Author(s).
Références
Chen Y, Matveev V (2021) Stationary C[Formula: see text] nanodomains in the presence of buffers with two binding sites. Biophys J 120:1942–1956
doi: 10.1016/j.bpj.2021.03.015
Clapham DE (2007) Calcium signaling. Cell 131:1047–1058
doi: 10.1016/j.cell.2007.11.028
Dupont G, Falcke M, Kirk V, Sneyd J (2016) Models of calcium signalling, interdisciplinary applied mathematics. Springer, New York
doi: 10.1007/978-3-319-29647-0
Falcke M (2004–2005) Reading the patterns in living cells - the physics of [Formula: see text] signaling. Adv Phys 53:255–440
Fitzhugh R (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve conduction equations. J Gen Physiol 43:867–896
doi: 10.1085/jgp.43.5.867
Fitzhugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys J 1:445–466
doi: 10.1016/S0006-3495(61)86902-6
Kaźmierczak B, Peradzynski Z (2011) Calcium waves with fast buffers and mechanical effects. J Math Biol 62:1–38
doi: 10.1007/s00285-009-0323-2
Kaźmierczak B, Sneyd J (2021) Speed of traveling waves for monotone reaction-diffusion systems as a function of diffusion coefficients. Phys D Nonlinear Phenom 424:132940
doi: 10.1016/j.physd.2021.132940
Kaźmierczak B, Volpert V (2008) Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion. Nonlinearity 21:71–96
doi: 10.1088/0951-7715/21/1/004
Kaźmierczak B, Volpert V (2008) Travelling calcium waves in systems with non-diffusing buffers. Math Models Methods Appl Sci 18:883–912
doi: 10.1142/S0218202508002899
Keener J, Sneyd J (1998) Mathematical physiology. Springer-Verlag, New York
doi: 10.1007/b98841
Matveev V (2018) Extension of rapid buffering approximation to [Formula: see text] buffers with two binding sites. Biophys J 114:1204–1215
doi: 10.1016/j.bpj.2018.01.019
Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070
doi: 10.1109/JRPROC.1962.288235
Palmer KJ (1984) Exponential dichotomies and transversal homoclinic points. J Diff Equ 20:225–256
doi: 10.1016/0022-0396(84)90082-2
Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3:a004069
doi: 10.1101/cshperspect.a004069
Schwaller B (2010) Cytosolic [Formula: see text] buffers. Cold Spring Harb Perspect Biol 2:a004051
doi: 10.1101/cshperspect.a004051
Smith GD, Pearson JE, Keizer J (2002) Modeling intracellular calcium waves and sparks. In: Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) Computatiional cell biology. Springer-Verlag, New York, pp 198–229
Sneyd J, Dale PD, Duffy A (1998) Traveling waves in buffered systems: applications to calcium waves. SIAM J Appl Math 58:1178–1192
doi: 10.1137/S0036139996305074
Sorensen BR, Shea MA (1996) Calcium binding decreases the stokes radius of calmodulin and mutants R74A, R9OA, and R9OG. Biophys J 71:3407–3420
doi: 10.1016/S0006-3495(96)79535-8
Starovasnik MA, Klevit RE, Su D-R, Beckingham K (1992) A series of point mutations reveal interactions between the calcium-binding sites of calmodulin. Protein Sci 1:245–253
doi: 10.1002/pro.5560010206
Taylor AE (1958) Introduction to functional analysis. Wiley, New York
Tsai J-C (2007) Asymptotic stability of traveling wave fronts in the buffered bistable system. SIAM J Math Anal 39:138–159
doi: 10.1137/050639685
Tsai J-C (2013) Do calcium buffers always slow down the propagation of calcium waves? J Math Biol 67:1587–1632
doi: 10.1007/s00285-012-0605-y
Tsai J-C, Sneyd J (2005) Existence and stability of traveling waves in buffered systems. SIAM J Appl Math 66:237–265
doi: 10.1137/040618291
Tsai J-C, Sneyd J (2011) Traveling waves in the buffered Fitzhugh-Nagumo model. SIAM J Appl Math 71:1606–1636
doi: 10.1137/110820348
Volpert AI, Volpert VA, Volpert VA (1994) Traveling-wave solutions of parabolic systems. Translations of Mathematical Monographs. American Mathematical Society, Providence
doi: 10.1090/mmono/140
Wagner J, Keizer J (1994) Effects of rapid buffers on [Formula: see text] diffusion and [Formula: see text] oscillations. Biophys J 67:447–456
doi: 10.1016/S0006-3495(94)80500-4