Silicon Doped Carbon Dots as an New Ratiometric Fluorescence Probe for Proanthocyanidins Assay Based on the Redox Reaction Between Cr(VI) and Proanthocyanidins.


Journal

Journal of fluorescence
ISSN: 1573-4994
Titre abrégé: J Fluoresc
Pays: Netherlands
ID NLM: 9201341

Informations de publication

Date de publication:
May 2023
Historique:
received: 15 11 2022
accepted: 15 12 2022
medline: 1 5 2023
pubmed: 4 1 2023
entrez: 3 1 2023
Statut: ppublish

Résumé

In the study, silicon doped carbon quantum dots (Si-CQDs) was prepared by one-pot hydrothermal method with (3-aminopropyl) triethoxysilane (APTES) and o-phenylenediamine (OPD) as raw materials. Then a new ratiometric fluorescent probe (RF-probe) was successfully established for sensitively and selectively monitoring proanthocyanidins (PAs) with a linear range of 10-500 nM and limit of detection (LOD) of 5.6 nM. that is, the fluorescence (FL) intensity of Si-CQDs at 570 nm was used as the built-in reference, while dopamine (DA) reacting with 4-hexylresorcinol (4-HR) could produce a new fluorescent substance (named as azamonardine, AZMON), and its FL intensity at 480 nm was reduced because Cr(VI) could oxidize DA to generate quinone without fluorescence. In the presence of PAs, Cr(VI) was reduced to Cr(III), which caused that the amount of DA reacting with 4-HR was increased, thus the FL intensity of AZMON was recovered. Furthermore, the RF-probe was successfully used for the determination of PAs in black goji berry from two different areas and PAs capsule with satisfactory results compared to the standard HPLC method.

Identifiants

pubmed: 36595093
doi: 10.1007/s10895-022-03131-w
pii: 10.1007/s10895-022-03131-w
doi:

Substances chimiques

chromium hexavalent ion 18540-29-9
Fluorescent Dyes 0
Silicon Z4152N8IUI
Proanthocyanidins 0
Carbon 7440-44-0
Dopamine VTD58H1Z2X

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

849-858

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Gao C, Cunningham DG, Liu H, Khoo C, Gu L (2018) Development of a thiolytic HPLC method for the analysis of Procyanidins in Cranberry Products. J Agric Food Chem 66(9):2159–2167. https://doi.org/10.1021/acs.jafc.7b04625
doi: 10.1021/acs.jafc.7b04625 pubmed: 29430926
Ngamsuk S, Huang T, Hsu J (2019) Determination of Phenolic Compounds, Procyanidins, and antioxidant activity in processed Coffea arabica L. Leaves. Foods 8(9):389. https://doi.org/10.3390/foods8090389
doi: 10.3390/foods8090389 pubmed: 31487835 pmcid: 6769686
Jing S, Zeller WE, Ferreira D, Zhou B, Nam J, Bedran-Russo A, Chen S, Pauli GF (2020) Proanthocyanidin Block arrays (PACBAR) for Comprehensive capture and Delineation of Proanthocyanidin Structures. J Agric Food Chem 68(47):13541–13549. https://doi.org/10.1021/acs.jafc.0c05392
doi: 10.1021/acs.jafc.0c05392 pubmed: 33175506 pmcid: 8010997
Qi QQ, Chu MJ, Yu XT, Xie YN, Li YL, Du YM, Liu XM, Zhang ZF, Shi J, Yan N (2022) Anthocyanins and proanthocyanidins: Chemical Structures, Food sources, bioactivities, and Product Development. Food Rev Int 1–29. https://doi.org/10.1080/87559129.2022.2029479
Hu Y, Fan YC, Jiang XH, Zhou LM, Cheng ZJ (2021) A ratiometric fluorescent sensing of proanthocyanidins by MnO
doi: 10.1016/j.talanta.2021.122607 pubmed: 34364420
Elliott J, Simoska O, Karasik S, Shear JB, Stevenson KJ (2017) Transparent Carbon Ultramicroelectrode arrays for the Electrochemical detection of a bacterial Warfare Toxin, pyocyanin. Anal Chem 89:6285–6289. https://doi.org/10.1021/acs.analchem.7b00876
doi: 10.1021/acs.analchem.7b00876 pubmed: 28558232
Miranda-Hernández AM, Muñiz-Márquez DB, Wong-Paz JE, Aguilar-Zárate P, Rosa-Hernández M, Larios-Cruz R, Aguilar CN (2019) Characterization by HPLC-ESI-MS
doi: 10.1016/j.foodchem.2019.04.020 pubmed: 31006450
Li MN, Wang HY, Wang R, Li CR, Shen BQ, Gao W, Li P, Yang H (2020) A modified data filtering strategy for targeted characterization of polymers in complex matrixes using drift tube ion mobility-mass spectrometry: application to analysis of procyanidins in the grape seed extracts. Food Chem 321:126693. https://doi.org/10.1016/j.foodchem.2020.126693
doi: 10.1016/j.foodchem.2020.126693 pubmed: 32247183
Szmagara A, Krzyszczak A, Sadok I, Karczmarz K, Staniszewska MM, Stefaniak EA (2019) Determination of ellagic acid in rose matrix by spectrofluorimetry. J Food Compost Anal 78:91–100. https://doi.org/10.1016/j.jfca.2019.02.003
doi: 10.1016/j.jfca.2019.02.003
Muñoz-Labrador A, Prodanov M, Villamiel M (2019) Effects of high intensity ultrasound on disaggregation of a macromolecular procyanidin-rich fraction from Vitis vinifera L. seed extract and evaluation of its antioxidant activity. Ultrason Sonochem 50:74–81. https://doi.org/10.1016/j.ultsonch.2018.08.030
doi: 10.1016/j.ultsonch.2018.08.030 pubmed: 30219355
Li B, Fu RR, Tan H, Zhang Y, Teng W, Li ZY, Tian JL (2021) Characteristics of the interaction mechanisms of procyanidin B1 and procyanidin B2 with protein tyrosine phosphatase-1B: analysis by kinetics, spectroscopy methods and molecular docking. Spectrochim Acta Part A: 259:119910. https://doi.org/10.1016/j.saa.2021.119910
doi: 10.1016/j.saa.2021.119910
Liu T, Zhang S, Fan XY, Yang D, Wang M, Shao XD, Wang SH, Yue QL (2022) Inner-filter Effect Induced fluorescence quenching of Carbon Dots for Cr(VI) detection with high sensitivity. J Fluoresc. https://doi.org/10.1007/s10895-022-03028-8
doi: 10.1007/s10895-022-03028-8 pubmed: 36580202
Tian L, Li Z, Wang P, Zhai XH, Wang X, Li TX (2021) Carbon quantum dots for advanced electrocatalysis. J Energy Chem 55:279–294. https://doi.org/10.1016/j.jechem.2020.06.057
doi: 10.1016/j.jechem.2020.06.057
Gao XX, Zhang Y, Fu Z, Cui FL (2022) One step synthesis of ultra-high quantum yield fluorescent carbon dots for “on-off-on” detection of Hg
doi: 10.1007/s10895-022-03001-5 pubmed: 35763184
Shen LM, Liu J (2016) New development in carbon quantum dots technical applications. Talanta 156–157:245–256. https://doi.org/10.1016/j.talanta.2016.05.028
doi: 10.1016/j.talanta.2016.05.028 pubmed: 27260460
Şen FB, Beğiç N, Bener M, Apak P (2022) Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots. Spectrochim Acta Part A 271:120884. https://doi.org/10.1016/j.saa.2022.120884
doi: 10.1016/j.saa.2022.120884
Li MX, Chen T, Gooding JJ, Liu JQ (2019) Review of Carbon and Graphene Quantum Dots for sensing. ACS Sens 4(7):1732–1748. https://doi.org/10.1021/acssensors.9b00514
doi: 10.1021/acssensors.9b00514 pubmed: 31267734
Carneiro SV, Holanda MHB, Cunha HO, Oliveira JJP, Pontes SMA, Cruz AAC, Fechine LMUD, Moura TA, Paschoal AR, Zambelli RA, Freire RM, Fechine PBA (2021) Highly sensitive sensing of food additives based on fluorescent carbon quantum dots. J Photoch Photobio A 411:113198. https://doi.org/10.1016/j.jphotochem.2021.113198
doi: 10.1016/j.jphotochem.2021.113198
Tan Q, An XX, Pan S, Zhen S, Hu YM, Hu XL (2022) A facile and sensitive ratiometric fluorescent sensor for determination of gallic acid. Microchem J 172:106922. https://doi.org/10.1016/j.microc.2021.106922
doi: 10.1016/j.microc.2021.106922
Qi L, Ding H, Lu CF, Wang XX (2022) A dual-mode optical assay for iron(II) and gallic acid based on Fenton reaction. Luminescence in press. https://doi.org/10.1002/bio.4247
doi: 10.1002/bio.4247
Yang J, Huang Y, Cui HY, Li L, Ding YP (2022) A FRET fluorescent sensor for ratiometric and visual detection of Sulfide based on Carbon Dots and Silver Nanoclusters. J Fluoresc 32(5):1815–1823. https://doi.org/10.1007/s10895-022-02981-8
doi: 10.1007/s10895-022-02981-8 pubmed: 35704138
Li M, Fan JL, Li HD, Du JJ, Long SR, Peng XJ (2018) A ratiometric fluorescence probe for lysosomal polarity. Biomaterials 164:98–105. https://doi.org/10.1016/j.biomaterials.2018.02.044
doi: 10.1016/j.biomaterials.2018.02.044 pubmed: 29500991
Ji W, Yu JL, Cheng JX, Fu LW, Zhang ZY, Li BW, Chen LX, Wang XY (2022) Dual-Emissive Near-Infrared Carbon dot-based ratiometric fluorescence Sensor for Lysozyme. ACS Appl Nano Mater 5(1):1656–1663. https://doi.org/10.1021/acsanm.1c04435
doi: 10.1021/acsanm.1c04435
Zhang ZL, Long DY, Yang M, Chang XJ, Xian H, Chen J, Peng HJ, Peng JD (2021) A ratiometric fluorescence sensor for ascorbic acid determination based on an AND-NAND logic pair. Microchim Acta 188(11):376. https://doi.org/10.1007/s00604-021-05043-1
doi: 10.1007/s00604-021-05043-1
Wen JL, Li N, Li D, Zhang MM, Lin YW, Liu ZP, Lin XF, Shui LL (2021) Cesium-Doped Graphene Quantum Dots as ratiometric fluorescence sensors for blood glucose detection. ACS Appl Nano Mater 4(8):8437–8446. https://doi.org/10.1021/acsanm.1c01730
doi: 10.1021/acsanm.1c01730
Sun ZS, Zhou WY, Luo JB, Fan JQ, Wu ZC, Zhu HN, Huang JQ, Zhang XG (2022) High-efficient and pH-sensitive orange luminescence from silicon-doped carbon dots for information encryption and bio-imaging. J Colloid Interface Sci 607:16–23. https://doi.org/10.1016/j.jcis.2021.08.188
doi: 10.1016/j.jcis.2021.08.188 pubmed: 34492349
Liu YS, Li W, Wu P, Ma CH, Wu XY, Xu MC, Luo S, Xu Z, Liu SX (2019) Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens Actuat B-Chem 281:34–43. https://doi.org/10.1016/j.snb.2018.10.075
doi: 10.1016/j.snb.2018.10.075
Li YP, Jia Y, Zeng Q, Jiang XH, Cheng ZJ (2019) A multifunctional sensor for selective and sensitive detection of vitamin B12 and tartrazine by Förster resonance energy transfer. Spectrochim Acta Part A 211:178–188. https://doi.org/10.1016/j.saa.2018.12.002
doi: 10.1016/j.saa.2018.12.002
Hu Y, Jia Y, Liao YW, Jiang XH, Cheng ZJ (2020) Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced ag nanoclusters. Spectrochim Acta Part A 225:117519. https://doi.org/10.1016/j.saa.2019.117519
doi: 10.1016/j.saa.2019.117519
Vidana Gamage GC, Lim YY, Choo WS (2021) Black Goji Berry Anthocyanins: extraction, Stability, Health benefits, and applications. Acs Food Sci Technol 1(8):1360–1370. https://doi.org/10.1021/acsfoodscitech.1c00203
doi: 10.1021/acsfoodscitech.1c00203
Amollo TA, Mola GT, Nyamori VO (2017) Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties. Nanotechnology 28(49):495703. https://doi.org/10.1088/1361-6528/aa9299
doi: 10.1088/1361-6528/aa9299 pubmed: 29019338
Liu YL, Cao YY, Bu T, Sun XY, Zhe TT, Huang C, Yao SY, Wang L (2019) Silicon-doped carbon quantum dots with blue and green emission are a viable ratiometric fluorescent probe for hydroquinone. Microchim Acta 186:399. https://doi.org/10.1007/s00604-019-3490-x
doi: 10.1007/s00604-019-3490-x
Yuan L, Liu LZ, Bai YF, Qin J, Chen M, Feng F (2022) A novel ratiometric fluorescent probe for detection of l-glutamic acid based on dual-emission carbon dots. Talanta 245:123416. https://doi.org/10.1016/j.talanta.2022.123416
doi: 10.1016/j.talanta.2022.123416 pubmed: 35427947
Ren W, Zhang Y, Liang WY, Yang XP, Jiang WD, Liu XH, Zhang W (2021) A facile and sensitive ratiometric fluorescence sensor for rapid visual monitoring of trace resorcinol. Sens Actuat B-Chem 330:129390. https://doi.org/10.1016/j.snb.2020.129390
doi: 10.1016/j.snb.2020.129390
Zhang XL, Zhu YG, Li X, Guo XH, Zhang B, Jia X, Dai B (2016) A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Anal Chim Acta 944:51–56. https://doi.org/10.1016/j.aca.2016.09.023
doi: 10.1016/j.aca.2016.09.023 pubmed: 27776639
Tian T, He Y, Ge YL, Song GW (2017) One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr(VI) and dopamine. Sens Actuat B-Chem 240:1265–1271. https://doi.org/10.1016/j.snb.2016.09.114
doi: 10.1016/j.snb.2016.09.114
Mystrioti C, Koursari S, Xenidis A, Papassiopi N (2021) Hexavalent chromium reduction by gallic acid. Chemosphere 273:129737. https://doi.org/10.1016/j.chemosphere.2021.129737
doi: 10.1016/j.chemosphere.2021.129737 pubmed: 33524764

Auteurs

Qingqing Hu (Q)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Weihua Yu (W)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Yucong Fan (Y)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Jianhua Kuang (J)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.

Zhengjun Cheng (Z)

Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China. ncczj1112@126.com.
Institute of Applied Chemistry, China West Normal University, Nanchong, 637002, China. ncczj1112@126.com.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice

Classifications MeSH