Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope.


Journal

Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081

Informations de publication

Date de publication:
03 2023
Historique:
accepted: 23 11 2022
pubmed: 6 1 2023
medline: 25 2 2023
entrez: 5 1 2023
Statut: ppublish

Résumé

Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.

Identifiants

pubmed: 36604599
doi: 10.1038/s41581-022-00661-1
pii: 10.1038/s41581-022-00661-1
doi:

Substances chimiques

Oxalates 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

194-211

Informations de copyright

© 2023. Springer Nature Limited.

Références

Cochat, P. et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transpl. 27, 1729–1736 (2012).
Garrelfs, S. F. et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 96, 1389–1399 (2019).
pubmed: 31685312
Martin-Higueras, C. et al. A report from the European Hyperoxaluria Consortium (OxalEurope) registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int. 100, 621–635 (2021).
pubmed: 33865885
Steering Committee on Quality Improvement Management. Classifying recommendations for clinical practice guidelines. Pediatrics 114, 874–877 (2004).
Linstone, H. A. & Turoff, M. The Delphi Method (Addison-Wesley, 1975).
Mandrile, G. et al. Genetic assessment in primary hyperoxaluria: why it matters. Pediatr. Nephrol. https://doi.org/10.1007/s00467-022-05613-2 (2022).
doi: 10.1007/s00467-022-05613-2 pubmed: 35695965 pmcid: 9842587
ACGS. Best Practice Guidelines https://www.acgs.uk.com/quality/best-practice-guidelines/ (2022)
Rumsby, G., Williams, E. & Coulter-Mackie, M. B. Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias. Kidney Int. 66, 959–963 (2004).
pubmed: 15327387
Hopp, K. et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J. Am. Soc. Nephrol. 26, 2559–2570 (2015).
pubmed: 25644115 pmcid: 4587693
Harambat, J. et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int. 77, 443–449 (2010).
pubmed: 20016466
Zhao, F. et al. Characteristics of the genotype and phenotype in Chinese primary hyperoxaluria type 1 populations. Urolithiasis 49, 17–25 (2021).
pubmed: 32556641
Talati, J. J. et al. Primary hyperoxaluria in populations of Pakistan origin: results from a literature review and two major registries. Urolithiasis 46, 187–195 (2018).
pubmed: 28660284
Belostotsky, R. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 87, 392–399 (2010).
pubmed: 20797690 pmcid: 2933339
Fang, X. et al. Nine novel HOGA1 gene mutations identified in primary hyperoxaluria type 3 and distinct clinical and biochemical characteristics in Chinese children. Pediatr. Nephrol. 34, 1785–1790 (2019).
pubmed: 31123811
Mandrile, G. et al. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 86, 1197–1204 (2014).
pubmed: 24988064
Deesker, L. J. et al. Improved outcome of infantile oxalosis over time in Europe: data from the OxalEurope Registry. Kidney Int. Rep. 7, 1608–1618 (2022).
pubmed: 35812297 pmcid: 9263236
Singh, P. et al. Clinical characterization of primary hyperoxaluria type 3 in comparison to types 1 and 2: a retrospective cohort study. Nephrol. Dial. Transplant. 37, 869–875 (2022).
pubmed: 33543760
van Woerden, C. S., Huidekoper, H. H., Groothoff, J. W., Wijburg, F. A. & Duran, M. Postponing urine acidification for 24 h does not change the oxalate concentration. Clin. Chim. Acta 384, 184–185 (2007).
pubmed: 17659269
Mazzachi, B. C., Teubner, J. K. & Ryall, R. L. Factors affecting measurement of urinary oxalate. Clin. Chem. 30, 1339–1343 (1984).
pubmed: 6744582
Ferraro, P. M. et al. Estimating 24-hour urinary excretion using spot urine measurements in kidney stone formers. Nephrol. Dial. Transplant. 37, 2171–2179 (2022).
pubmed: 35146503 pmcid: 9585473
Clifford-Mobley, O., Tims, C. & Rumsby, G. The comparability of oxalate excretion and oxalate:creatinine ratio in the investigation of primary hyperoxaluria:a review of data from a referral centre. Ann. Clin. Biochem. 52, 113–121 (2015).
pubmed: 24719216
Hoppe, B. et al. Influence of nutrition on urinary oxalate and calcium in preterm and term infants. Pediatr. Nephrol. 11, 687–690 (1997).
pubmed: 9438643
Siener, R., Hoppe, B., Löhr, P., Müller, S. C. & Latz, S. Metabolic profile and impact of diet in patients with primary hyperoxaluria. Int. Urol. Nephrol. 50, 1583–1589 (2018).
pubmed: 30039216
Witting, C. et al. Pathophysiology and treatment of enteric hyperoxaluria. Clin. J. Am. Soc. Nephrol. 16, 487–495 (2021).
pubmed: 32900691
Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).
pubmed: 11784873
Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).
pubmed: 33789010
Balchin, Z. E., Moss, P. A. & Fraser, C. G. Biological variation of urinary oxalate in different specimen types. Ann. Clin. Biochem. 28, 622–623 (1991).
pubmed: 1776815
Clifford-Mobley, O., Sjogren, A., Lindner, E. & Rumsby, G. Urine oxalate biological variation in patients with primary hyperoxaluria. Urolithiasis 44, 333–337 (2016).
pubmed: 26857252
Lumlertgul, N., Siribamrungwong, M., Jaber, B. L. & Susantitaphong, P. Secondary oxalate nephropathy: a systematic review. Kidney Int. Rep. 3, 1363–1372 (2018).
pubmed: 30450463 pmcid: 6224620
Marshall, D. J., Adaway, J. E. & Keevil, B. G. A combined liquid chromatography tandem mass spectrometry assay for the quantification of urinary oxalate and citrate in patients with nephrolithiasis. Ann. Clin. Biochem. 55, 461–468 (2018).
pubmed: 28990817
Frishberg, Y., Zeharia, A., Lyakhovetsky, R., Bargal, R. & Belostotsky, R. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J. Med. Genet. 51, 526–529 (2014).
pubmed: 24996905
McGregor, T. L. et al. Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. eLife 9, e54363 (2020).
pubmed: 32207686 pmcid: 7108859
Clifford-Mobley, O. et al. Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria. Pediatr. Nephrol. 32, 2159–2163 (2017).
pubmed: 28752386
Clifford-Mobley, O., Hewitt, L. & Rumsby, G. Simultaneous analysis of urinary metabolites for preliminary identification of primary hyperoxaluria. Ann. Clin. Biochem. 53, 485–494 (2016).
pubmed: 26342005
Ventzke, A. et al. Systematic assessment of urinary hydroxy-oxo-glutarate for diagnosis and follow-up of primary hyperoxaluria type III. Pediatr. Nephrol. 32, 2263–2271 (2017).
pubmed: 28711958
Woodward, G., Pryke, R., Hoppe, B. & Rumsby, G. Rapid liquid chromatography tandem mass-spectrometry screening method for urinary metabolites of primary hyperoxaluria. Ann. Clin. Biochem. 56, 232–239 (2019).
pubmed: 30373392
Stokes, F. et al. Plasma oxalate: comparison of methodologies. Urolithiasis 48, 473–480 (2020).
pubmed: 32472220 pmcid: 7666277
Perinpam, M. et al. Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. Clin. Biochem. 50, 1014–1019 (2017).
pubmed: 28764885 pmcid: 5705406
Cochat, P. & Rumsby, G. Primary hyperoxaluria. N. Engl. J. Med. 369, 649–658 (2013).
pubmed: 23944302
Marangella, M. et al. Serum calcium oxalate saturation in patients on maintenance haemodialysis for primary hyperoxaluria or oxalosis-unrelated renal diseases. Clin. Sci. 81, 483–490 (1991).
Hoppe, B. et al. Plasma calcium oxalate supersaturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int. 56, 268–274 (1999).
pubmed: 10411702
Pfau, A. et al. Assessment of plasma oxalate concentration in patients with CKD. Kidney Int. Rep. 5, 2013–2020 (2020).
pubmed: 33163722 pmcid: 7609998
Daudon, M., Jungers, P. & Bazin, D. Peculiar morphology of stones in primary hyperoxaluria. N. Engl. J. Med. 359, 100–102 (2008).
pubmed: 18596285
Daudon, M. & Jungers, P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol. 98, p31–p36 (2004).
pubmed: 15499212
Servais, A. et al. Cystinuria: clinical practice recommendation. Kidney Int. 99, 48–58 (2021).
pubmed: 32918941
Daudon, M., Hennequin, C., Boujelben, G., Lacour, B. & Jungers, P. Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int. 67, 1934–1943 (2005).
pubmed: 15840041
Jouvet, P. et al. Crystalluria: a clinically useful investigation in children with primary hyperoxaluria post-transplantation. Kidney Int. 53, 1412–1416 (1998).
pubmed: 9573560
Pak, C. Y., Sakhaee, K., Crowther, C. & Brinkley, L. Evidence justifying a high fluid intake in treatment of nephrolithiasis. Ann. Intern. Med. 93, 36–39 (1980).
pubmed: 7396311
Porowski, T. et al. Upper metastable limit osmolality of urine as a predictor of kidney stone formation in children. Urolithiasis 47, 155–163 (2019).
pubmed: 29356875
Lande, M. B., Varade, W., Erkan, E., Niederbracht, Y. & Schwartz, G. J. Role of urinary supersaturation in the evaluation of children with urolithiasis. Pediatr. Nephrol. 20, 491–494 (2005).
pubmed: 15717161
Skolarikos, A. et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur. Urol. 67, 750–763 (2015).
pubmed: 25454613
Leumann, E., Hoppe, B. & Neuhaus, T. Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr. Nephrol. 7, 207–211 (1993).
pubmed: 8476722
Fargue, S. et al. Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1. Kidney Int. 76, 767–773 (2009).
pubmed: 19571789
Sikora, P. et al. [
pubmed: 18337715
Monico, C. G., Rossetti, S., Olson, J. B. & Milliner, D. S. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 67, 1704–1709 (2005).
pubmed: 15840016
Monico, C. G., Olson, J. B. & Milliner, D. S. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am. J. Nephrol. 25, 183–188 (2005).
pubmed: 15849466
Milliner, D. S., Eickholt, J. T., Bergstralh, E. J., Wilson, D. M. & Smith, L. H. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N. Engl. J. Med. 331, 1553–1558 (1994).
pubmed: 7969325
Hoyer-Kuhn, H. et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin. J. Am. Soc. Nephrol. 9, 468–477 (2014).
pubmed: 24385516 pmcid: 3944765
Hoppe, B., Latta, K., von Schnakenburg, C. & Kemper, M. J. Primary hyperoxaluria–the German experience. Am. J. Nephrol. 25, 276–281 (2005).
pubmed: 15961947
Hoppe, B., Beck, B. B. & Milliner, D. S. The primary hyperoxalurias. Kidney Int. 75, 1264–1271 (2009).
pubmed: 19225556 pmcid: 4577278
Leumann, E. & Hoppe, B. The primary hyperoxalurias. J. Am. Soc. Nephrol. 12, 1986–1993 (2001).
pubmed: 11518794
Singh, P. et al. Pyridoxine responsiveness in a type 1 primary hyperoxaluria patient with a rare (atypical) AGXT gene mutation. Kidney Int. Rep. 5, 955–958 (2020).
pubmed: 32518881 pmcid: 7270974
van Woerden, C. S. et al. Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int. 66, 746–752 (2004).
pubmed: 15253729
Marangella, M., Petrarulo, M., Cosseddu, D., Vitale, C. & Linari, F. Oxalate balance studies in patients on hemodialysis for type I primary hyperoxaluria. Am. J. Kidney Dis. 19, 546–553 (1992).
pubmed: 1595703
Hoppe, B. et al. Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr. Nephrol. 10, 488–492 (1996).
pubmed: 8865249
Illies, F., Bonzel, K. E., Wingen, A. M., Latta, K. & Hoyer, P. F. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 70, 1642–1648 (2006).
pubmed: 16955107
Franssen, C. F. Oxalate clearance by haemodialysis–a comparison of seven dialysers. Nephrol. Dial. Transpl. 20, 1916–1921 (2005).
Ogawa, Y. et al. Calcium oxalate saturation in dialysis patients with and without primary hyperoxaluria. Urol. Res. 34, 12–16 (2006).
pubmed: 16432691
Marangella, M. et al. Bony content of oxalate in patients with primary hyperoxaluria or oxalosis-unrelated renal failure. Kidney Int. 48, 182–187 (1995).
pubmed: 7564076
Díaz, C. et al. Long daily hemodialysis sessions correct systemic complications of oxalosis prior to combined liver-kidney transplantation: case report. Ther. Apher. Dial. 8, 52–55 (2004).
pubmed: 15128020
Tang, X. et al. Oxalate quantification in hemodialysate to assess dialysis adequacy for primary hyperoxaluria. Am. J. Nephrol. 39, 376–382 (2014).
pubmed: 24776840
Trotter, J. F. & Milliner, D. Auxiliary liver transplant is an ineffective treatment of primary hyperoxaluria. Am. J. Transpl. 14, 241 (2014).
Knotek, M. et al. Combined auxiliary split liver and kidney transplantation for type I primary hyperoxaluria and end-stage kidney disease. Nephrology 19, 814–815 (2014).
pubmed: 25403990
Onaca, N. et al. Cadaveric orthotopic auxiliary split liver transplantation and kidney transplantation: an alternative for type 1 primary hyperoxaluria. Transplantation 80, 421–424 (2005).
pubmed: 16082341
Elias, N. et al. Native portal vein embolization for persistent hyperoxaluria following kidney and auxiliary partial liver transplantation. Am. J. Transpl. 13, 2739–2742 (2013).
Metry, E. L. et al. Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr. Nephrol. 36, 2217–2226 (2021).
pubmed: 33830344 pmcid: 8260423
Compagnon, P. et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl. 20, 1475–1485 (2014).
pubmed: 25267365
Monico, C. G. & Milliner, D. S. Combined liver-kidney and kidney-alone transplantation in primary hyperoxaluria. Liver Transpl. 7, 954–963 (2001).
pubmed: 11699031
Harambat, J. et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin. J. Am. Soc. Nephrol. 7, 458–465 (2012).
pubmed: 22223608 pmcid: 3302673
Bergstralh, E. J. et al. Transplantation outcomes in primary hyperoxaluria. Am. J. Transpl. 10, 2493–2501 (2010).
Cibrik, D. M., Kaplan, B., Arndorfer, J. A. & Meier-Kriesche, H. U. Renal allograft survival in patients with oxalosis. Transplantation 74, 707–710 (2002).
pubmed: 12352890
Metry, E. L. et al. Long-Term transplantation outcomes in patients with primary hyperoxaluria type 1 included in the European Hyperoxaluria Consortium (OxalEurope) registry. Kidney Int. Rep. 7, 210–220 (2022).
pubmed: 35155860
Naderi, G., Latif, A., Tabassomi, F. & Esfahani, S. T. Failure of isolated kidney transplantation in a pediatric patient with primary hyperoxaluria type 2. Pediatr. Transpl. 18, E69–E73 (2014).
Dhondup, T., Lorenz, E. C., Milliner, D. S. & Lieske, J. C. Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am. J. Transpl. 18, 253–257 (2018).
Del Bello, A., Cointault, O., Delas, A. & Kamar, N. Primary hyperoxaluria type 2 successfully treated with combined liver-kidney transplantation after failure of isolated kidney transplantation. Am. J. Transpl. 20, 1752–1753 (2020).
Jia, Z., Zhong, Q., Lin, T. & Song, T. Subsequent liver transplantation did not reverse recurrence of oxalate nephropathy after isolated kidney transplantation for primary type 2 hyperoxaluria. Asian J. Surg. 45, 483–485 (2022).
pubmed: 34629272
EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam (2022).
Al-Abadi, E. & Hulton, S. A. Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis–still the first choice? Pediatr. Nephrol. 28, 1085–1089 (2013).
pubmed: 23397522
Carrasco, A. Jr, Granberg, C. F., Gettman, M. T., Milliner, D. S. & Krambeck, A. E. Surgical management of stone disease in patients with primary hyperoxaluria. Urology 85, 522–526 (2015).
pubmed: 25733260
Kamoun, A. et al. Primary hyperoxaluria: Tunisian experience apropos of 24 pediatric cases [French]. Nephrologie 18, 59–64 (1997).
pubmed: 9182235
Kamoun, A. et al. Value of extracorporeal shockwave lithotripsy in primary hyperoxaluria type I [French]. Arch. Pediatr. 2, 747–749 (1995).
pubmed: 7550839
Boddy, S. A., Duffy, P. G., Barratt, T. M. & Whitfield, H. N. Hyperoxaluria and renal calculi in children: the role of extracorporeal shock wave lithotripsy. J. R. Soc. Med. 81, 604–605 (1988).
pubmed: 3184094 pmcid: 1291811
Frykholm, P. et al. Pre-operative fasting in children: a guideline from the European Society of Anaesthesiology and Intensive Care. Eur. J. Anaesthesiol. 39, 4–25 (2022).
pubmed: 34857683
Tang, X. et al. Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int. 87, 623–631 (2015).
pubmed: 25229337
Vrtiska, T. J. Quantitation of stone burden: imaging advances. Urol. Res. 33, 398–402 (2005).
pubmed: 16284880
Soliman, N. A. et al. Clinical spectrum of primary hyperoxaluria type 1: experience of a tertiary center. Nephrol. Ther. 13, 176–182 (2017).
pubmed: 28161266 pmcid: 5921832
Jellouli, M. et al. Primary hyperoxaluria in infants. Saudi J. Kidney Dis. Transpl. 27, 526–532 (2016).
pubmed: 27215245
van der Hoeven, S. M., van Woerden, C. S. & Groothoff, J. W. Primary hyperoxaluria type 1, a too often missed diagnosis and potentially treatable cause of end-stage renal disease in adults: results of the Dutch cohort. Nephrol. Dial. Transpl. 27, 3855–3862 (2012).
Bakkaloglu, S. A. et al. Bone evaluation in paediatric chronic kidney disease: clinical practice points from the European Society for Paediatric Nephrology CKD-MBD and Dialysis working groups and CKD-MBD working group of the ERA-EDTA. Nephrol. Dial. Transpl. 36, 413–425 (2021).
Devresse, A. et al. 12-Month analysis of ILLUMINATE-A, a phase 3 study of lumasiran: sustained oxalate lowering and kidney stone event rates in primary hyperoxaluria type 1. Presented at Belgian society of Nephrology (2021).
Sas, D. J. et al. Phase 3 trial of lumasiran for primary hyperoxaluria type 1: a new RNAi therapeutic in infants and young children. Genet. Med. 24, 654–662 (2022).
pubmed: 34906487
Michael, M. et al. Lumasiran for advanced primary hyperoxaluria type 1: phase 3 ILLUMINATE-C trial. Am. J. Kidney Dis. https://doi.org/10.1053/j.ajkd.2022.05.012 (2022).
doi: 10.1053/j.ajkd.2022.05.012 pubmed: 35843439
Hoppe, B. et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 101, 626–634 (2022).
pubmed: 34481803
Baum, M. A. et al. PHYOX2: a pivotal randomized study of nedosiran in primary hyperoxaluria type 1 or 2. Kidney Int. https://doi.org/10.1016/j.kint.2022.07.025 (2022).
doi: 10.1016/j.kint.2022.07.025 pubmed: 36007597
Shee, K. et al. Nedosiran dramatically reduces serum oxalate in dialysis-dependent primary hyperoxaluria 1: a compassionate use case report. Urology 156, e147–e149 (2021).
pubmed: 33774044
Hulton, S. A. et al. Randomized clinical trial on the long-term efficacy and safety of lumasiran in patients with primary hyperoxaluria type 1. Kidney Int. Rep. 7, 494–506 (2022).
pubmed: 35257062
Joher, N. et al. Early post-transplant recurrence of oxalate nephropathy in a patient with primary hyperoxaluria type 1, despite pretransplant lumasiran therapy. Kidney Int. 101, 185–186 (2022).
pubmed: 34991805
Metry, E. L., Oosterveld, M. J. S., Groothoff, J. W. & Bacchetta, J. The appearance of oxalate crystals in a kidney biopsy is no proof of post-transplant oxalate nephropathy in primary hyperoxaluria type 1. Kidney Int. 102, 446 (2022).
pubmed: 35870818
Stone, H. K. et al. Primary hyperoxaluria diagnosed after kidney transplant: a review of the literature and case report of aggressive renal replacement therapy and lumasiran to prevent allograft loss. Am. J. Transpl. 21, 4061–4067 (2021).
Sellier-Leclerc, A. L. et al. Isolated kidney transplantation under lumasiran therapy in primary hyperoxaluria type 1: a report of 5 cases. Nephrol. Dial. Transpl. https://doi.org/10.1093/ndt/gfac295 (2022).
doi: 10.1093/ndt/gfac295
Duclaux-Loras, R. et al. Pediatric combined liver-kidney transplantation: a single-center experience of 18 cases. Pediatr. Nephrol. 31, 1517–1529 (2016).
pubmed: 27060059
Le Dudal, M. et al. Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J. Clin. Invest. 129, 2571–2577 (2019).
pubmed: 30946030 pmcid: 6538379
Violier, P., Boyer, O., Berthaud, R. & Dorval, G. Treatment with stiripentol in a patient with primary hyperoxaluria type 1: lesson for the clinical nephrologist. J. Nephrol. 35, 1049–1051 (2022).
pubmed: 34283403
Martin-Higueras, C., Feldkotter, M. & Hoppe, B. Is stiripentol truly effective for treating primary hyperoxaluria? Clin. Kidney J. 14, 442–444 (2021).
pubmed: 33564453
Kempf, C. et al. Stiripentol fails to lower plasma oxalate in a dialysis-dependent PH1 patient. Pediatr. Nephrol. 35, 1787–1789 (2020).
pubmed: 32418144 pmcid: 7385015
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03819647 (2021).
Soliman, N. A. & Mabrouk, S. Primary hyperoxaluria type 1 in developing countries: novel challenges in a new therapeutic era. Clin. Kidney J. 15, i33–i36 (2022).
pubmed: 35592622 pmcid: 9113489
Cochat, P. et al. Primary hyperoxaluria in infants: medical, ethical, and economic issues. J. Pediatr. 135, 746–750 (1999).
pubmed: 10586179
Cai, Z. et al. Primary hyperoxaluria diagnosed after kidney transplantation: a case report and literature review. BMC Nephrol. 22, 393 (2021).
pubmed: 34837989 pmcid: 8626922
Al Riyami, M. S., Al Ghaithi, B., Al Hashmi, N. & Al Kalbani, N. Primary hyperoxaluria type 1 in 18 children: genotyping and outcome. Int. J. Nephrol. 2015, 634175 (2015).
pubmed: 25918646 pmcid: 4396551
Almardini, R. I., Alfarah, M. G. & Salaita, G. M. The clinical pattern of primary hyperoxaluria in pediatric patient at Queen Rania Abdulla Children Hospital. Arab. J. Nephrol. Transpl. 7, 119–123 (2014).
Gargah, T. et al. Primary hyperoxaluria type 1 in Tunisian children. Saudi J. Kidney Dis. Transpl. 23, 385–390 (2012).
pubmed: 22382246
Boualla, L. et al. AGXT gene mutations and prevalence of primary hyperoxaluria type 1 in Moroccan population. Genet. Test. Mol. Biomark. 19, 623–628 (2015).
Murad, H. et al. Molecular analysis of the AGXT gene in Syrian patients suspected with primary hyperoxaluria type 1. BMC Med. Genomics 14, 146 (2021).
pubmed: 34082749 pmcid: 8176596
M’Dimegh, S. et al. Mutational analysis of agxt in Tunisian population with primary hyperoxaluria type 1. Ann. Hum. Genet. 81, 1–10 (2017).
pubmed: 27935012
Soliman, N. A. et al. Clinical and molecular characterization of primary hyperoxaluria in Egypt. Sci. Rep. 12, 15886 (2022).
pubmed: 36151119 pmcid: 9508166
Hoppe, B. An update on primary hyperoxaluria. Nat. Rev. Nephrol. 8, 467–475 (2012).
pubmed: 22688746
Devresse, A., Cochat, P., Godefroid, N. & Kanaan, N. Transplantation for primary hyperoxaluria type 1: designing new strategies in the era of promising therapeutic perspectives. Kidney Int. Rep. 5, 2136–2145 (2020).
pubmed: 33305106 pmcid: 7710835
Miyata, N. et al. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc. Natl Acad. Sci. USA 111, 14406–14411 (2014).
pubmed: 25237136 pmcid: 4210028
Garrelfs, S. et al. Endogenous oxalate production in primary hyperoxaluria type 1 patients. J. Am. Soc. Nephrol. 32, 3175–3186 (2021).
pubmed: 34686543 pmcid: 8638398

Auteurs

Jaap W Groothoff (JW)

Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. j.w.groothoff@amsterdamumc.nl.

Ella Metry (E)

Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Lisa Deesker (L)

Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Sander Garrelfs (S)

Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Cecile Acquaviva (C)

Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, Lyon, France.

Reham Almardini (R)

Department of Pediatric Nephrology, Princes Rahma Children Teaching Hospital, Applied Balqa University, Medical School, Amman, Jordan.

Bodo B Beck (BB)

Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany.

Olivia Boyer (O)

Néphrologie Pédiatrique, Centre de Référence MARHEA, Institut Imagine, Université Paris Cité, Hôpital Necker - Enfants Malades, Paris, France.

Rimante Cerkauskiene (R)

Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

Pietro Manuel Ferraro (PM)

Chronic Kidney Disease Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.

Luitzen A Groen (LA)

Department of Pediatric Urology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands.

Asheeta Gupta (A)

Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.

Bertrand Knebelmann (B)

Faculté de Santé, UFR de Médecine, AP-HP Centre-Universite de Paris, Departement Néphrologie, Dialyse, Transplantation Adultes, Paris, France.

Giorgia Mandrile (G)

Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, Italy.

Shabbir S Moochhala (SS)

UCL Department of Renal Medicine, Royal Free Hospital, London, UK.

Agnieszka Prytula (A)

Department of Paediatric Nephrology and Rheumatology, Ghent University Hospital, Ghent, Belgium.

Jovana Putnik (J)

Department of Pediatric Nephrology, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Gill Rumsby (G)

Kintbury, UK, formerly Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust, London, UK.

Neveen A Soliman (NA)

Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt.

Bhaskar Somani (B)

Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK.

Justine Bacchetta (J)

Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, INSERM 1033 Unit, Lyon 1 University, Bron, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH