Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
01 2023
Historique:
received: 14 01 2022
accepted: 18 11 2022
pubmed: 12 1 2023
medline: 28 1 2023
entrez: 11 1 2023
Statut: ppublish

Résumé

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle

Identifiants

pubmed: 36631608
doi: 10.1038/s41586-022-05584-2
pii: 10.1038/s41586-022-05584-2
doi:

Substances chimiques

Anticodon 0
Codon, Terminator 0
Peptide Termination Factors 0
RNA, Transfer 9014-25-9
RNA, Transfer, Trp 0
RNA, Transfer, Glu 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

751-758

Commentaires et corrections

Type : CommentIn
Type : ErratumIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Záhonová, K., Kostygov, A. Y., Ševčíková, T., Yurchenko, V. & Eliáš, M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369 (2016).
pubmed: 27593378 doi: 10.1016/j.cub.2016.06.064
Bachvaroff, T. R. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS ONE 14, e0212912 (2019).
pubmed: 30818350 pmcid: 6394959 doi: 10.1371/journal.pone.0212912
Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016).
pubmed: 27426948 pmcid: 4967479 doi: 10.1016/j.cell.2016.06.020
Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol. Biol. Evol. 33, 2885–2889 (2016).
pubmed: 27501944 pmcid: 5062323 doi: 10.1093/molbev/msw166
Sella, G. & Ardell, D. H. The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J. Mol. Evol. 63, 297–313 (2006).
pubmed: 16838217 doi: 10.1007/s00239-004-0176-7
Koonin, E. V. & Novozhilov, A. S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009).
pubmed: 19117371 pmcid: 3293468 doi: 10.1002/iub.146
Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017).
pubmed: 27870834 doi: 10.1038/nsmb.3330
Shulgina, Y. & Eddy, S. R. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 10, e71402 (2021).
pubmed: 34751130 pmcid: 8629427 doi: 10.7554/eLife.71402
Keeling, P. J. Evolution of the genetic code. Curr. Biol. 26, R851–R853 (2016).
pubmed: 27676305 doi: 10.1016/j.cub.2016.08.005
Baranov, P. V., Atkins, J. F. & Yordanova, M. M. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16, 517–529 (2015).
pubmed: 26260261 doi: 10.1038/nrg3963
Keeling, P. J. & Leander, B. S. Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J. Mol. Biol. 326, 1337–1349 (2003).
pubmed: 12595248 doi: 10.1016/S0022-2836(03)00057-3
Karpov, S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164, 195–205 (2013).
pubmed: 23058793 doi: 10.1016/j.protis.2012.08.001
Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 11, 65–74 (2001).
pubmed: 11231122 doi: 10.1016/S0960-9822(01)00028-8
Sanchez-Silva, R., Villalobo, E., Morin, L. & Torres, A. A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr. Biol. 13, 442–447 (2003).
pubmed: 12620196 doi: 10.1016/S0960-9822(03)00126-X
Osawa, S. & Jukes, T. H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28, 271–278 (1989).
pubmed: 2499683 doi: 10.1007/BF02103422
Schultz, D. W. & Yarus, M. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235, 1377–1380 (1994).
pubmed: 8107079 doi: 10.1006/jmbi.1994.1094
Sengupta, S. & Higgs, P. G. A unified model of codon reassignment in alternative genetic codes. Genetics 170, 831–840 (2005).
pubmed: 15781705 pmcid: 1450412 doi: 10.1534/genetics.104.037887
Lukeš, J. et al. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466–480 (2018).
pubmed: 29605546 doi: 10.1016/j.pt.2018.03.002
Maslov, D. A. et al. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27 (2019).
pubmed: 29898792 doi: 10.1017/S0031182018000951
He, F. & Jacobson, A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49, 339–366 (2015).
pubmed: 26436458 pmcid: 4837945 doi: 10.1146/annurev-genet-112414-054639
Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745–757 (2014).
pubmed: 25192364 doi: 10.1016/j.molcel.2014.08.005
Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016).
pubmed: 26554031 pmcid: 4691835 doi: 10.1261/rna.053447.115
Sladic, R. T., Lagnado, C. A., Bagley, C. J. & Goodall, G. J. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271, 450–457 (2004).
pubmed: 14717712 doi: 10.1046/j.1432-1033.2003.03945.x
Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A. & Simpson, L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18, 7056–7062 (1999).
pubmed: 10601027 pmcid: 1171768 doi: 10.1093/emboj/18.24.7056
Wohlgamuth-Benedum, J. M. et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J. Biol. Chem. 284, 23947–23953 (2009).
pubmed: 19574216 pmcid: 2781988 doi: 10.1074/jbc.M109.029421
Paris, Z. et al. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA(Trp) to decode the UGA codon in Trypanosoma brucei. RNA Biol. 18, 278–286 (2021).
Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).
pubmed: 4933412 doi: 10.1016/0022-2836(71)90362-7
Nenarokova, A. & Paris, Z. tRNAseq analysis of Blastocrithidia nonstop. figshare https://doi.org/10.6084/m9.figshare.17934200.v2 (2022).
Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019).
pubmed: 31020551 pmcid: 6768409 doi: 10.1007/978-1-4939-9173-0_1
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).
pubmed: 14704338 pmcid: 373265 doi: 10.1093/nar/gkh152
Van Haute, L., Powell, C. A. & Minczuk, M. Dealing with an unconventional genetic code in mitochondria: the biogenesis and pathogenic defects of the 5-formylcytosine modification in mitochondrial tRNA(Met). Biomolecules 7, 24 (2017).
pubmed: 28257121 pmcid: 5372736 doi: 10.3390/biom7010024
Agris, P. F. et al. Celebrating wobble decoding: half a century and still much is new. RNA Biol 15, 537–553 (2018).
pubmed: 28812932 doi: 10.1080/15476286.2017.1356562
Beznosková, P., Gunisová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016).
pubmed: 26759455 pmcid: 4748822 doi: 10.1261/rna.054452.115
Beznosková, P., Pavlíková, Z., Zeman, J., Echeverria Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019).
pubmed: 31069379 pmcid: 6614816 doi: 10.1093/nar/gkz346
Pineyro, D., Torres, A. G. & de Pouplana, L. R. In Fungal RNA Biology (eds Sesma, A. & von der Haar, T.) 233–267 (Springer, 2014).
Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015).
pubmed: 26384426 pmcid: 4605324 doi: 10.1093/nar/gkv909
Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).
pubmed: 26245381 pmcid: 4591471 doi: 10.1038/nature14896
Blanchet, S. et al. New insights into stop codon recognition by eRF1. Nucleic Acids Res. 43, 3298–3308 (2015).
pubmed: 25735746 pmcid: 4381064 doi: 10.1093/nar/gkv154
Eliseev, B., Kryuchkova, P., Alkalaeva, E. & Frolova, L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res. 39, 599–608 (2011).
pubmed: 20860996 doi: 10.1093/nar/gkq759
Xue, H., Shen, W., Giege, R. & Wong, J. T. Identity elements of tRNA(Trp). Identification and evolutionary conservation. J. Biol. Chem. 268, 9316–9322 (1993).
pubmed: 8486627 doi: 10.1016/S0021-9258(18)98352-3
Ulmasov, B., Topin, A., Chen, Z., He, S. H. & Folk, W. R. Identity elements and aminoacylation of plant tRNATrp. Nucleic Acids Res. 26, 5139–5141 (1998).
pubmed: 9801311 pmcid: 147961 doi: 10.1093/nar/26.22.5139
Sekine, S. et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J. Mol. Biol. 256, 685–700 (1996).
pubmed: 8642591 doi: 10.1006/jmbi.1996.0118
Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).
pubmed: 34083482 pmcid: 7611380 doi: 10.1126/science.abg3029
Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018).
pubmed: 29284754 doi: 10.1073/pnas.1717806115
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).
pubmed: 28980641 doi: 10.1038/nature24031
Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).
pubmed: 35322228 pmcid: 9446716 doi: 10.1038/s41586-022-04533-3
Janssen, B. D., Diner, E. J. & Hayes, C. S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012).
pubmed: 22736012 pmcid: 3682404
Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998).
pubmed: 9630253 pmcid: 1369633
Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as “nonsense containing” leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999).
pubmed: 10564284 pmcid: 25692 doi: 10.1091/mbc.10.11.3971
Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017).
pubmed: 28442579 pmcid: 5513072 doi: 10.1261/rna.061051.117
Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016).
pubmed: 27033178 pmcid: 5014671 doi: 10.1016/j.ymeth.2016.03.016
Beznosková, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013).
pubmed: 24278036 pmcid: 3836723 doi: 10.1371/journal.pgen.1003962
Kouba, T. et al. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS ONE 7, e40464 (2012).
pubmed: 22792338 pmcid: 3390373 doi: 10.1371/journal.pone.0040464
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038
Nenarokova, A., Záhonová, K. & Nenarokov, S. The high-throughput sequencing datasets. figshare https://doi.org/10.6084/m9.figshare.21401541 (2022).
Nenarokova, A., Záhonová, K. & Nenarokov, S. Additional data and analyses. figshare https://figshare.com/projects/tRNA_anticodon_stem_length_variations_are_critical_for_stop_codon_reassignment/129167 (2022).
Nenarokov, S. & Nenarokova, A. Seraff/blasto: annotator & utilities for Blastocrithidia project (v1.0.2). Zenodo https://doi.org/10.5281/zenodo.7116082 (2022).
Potěšil, D. MS analysis of B. nonstop proteins. figshare https://doi.org/10.6084/m9.figshare.20105417.v2 (2022).

Auteurs

Ambar Kachale (A)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.

Zuzana Pavlíková (Z)

Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.

Anna Nenarokova (A)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.
School of Biological Sciences, University of Bristol, Bristol, UK.

Adriana Roithová (A)

Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.

Ignacio M Durante (IM)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

Petra Miletínová (P)

Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.

Kristína Záhonová (K)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.
Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.

Serafim Nenarokov (S)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.

Jan Votýpka (J)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic.

Eva Horáková (E)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic.

Robert L Ross (RL)

Thermo Fisher Scientific, Franklin, MA, USA.

Vyacheslav Yurchenko (V)

Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.

Petra Beznosková (P)

Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.

Zdeněk Paris (Z)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. parda@paru.cas.cz.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic. parda@paru.cas.cz.

Leoš Shivaya Valášek (LS)

Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic. valasekl@biomed.cas.cz.

Julius Lukeš (J)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic. jula@paru.cas.cz.
Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic. jula@paru.cas.cz.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH