Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment.
Anticodon
/ chemistry
Ciliophora
/ genetics
Codon, Terminator
/ genetics
Genetic Code
/ genetics
Mutation
Peptide Termination Factors
/ genetics
RNA, Transfer
/ genetics
RNA, Transfer, Trp
/ genetics
Saccharomyces cerevisiae
/ genetics
RNA, Transfer, Glu
/ genetics
Trypanosoma brucei brucei
/ genetics
Eukaryotic Cells
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
14
01
2022
accepted:
18
11
2022
pubmed:
12
1
2023
medline:
28
1
2023
entrez:
11
1
2023
Statut:
ppublish
Résumé
Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle
Identifiants
pubmed: 36631608
doi: 10.1038/s41586-022-05584-2
pii: 10.1038/s41586-022-05584-2
doi:
Substances chimiques
Anticodon
0
Codon, Terminator
0
Peptide Termination Factors
0
RNA, Transfer
9014-25-9
RNA, Transfer, Trp
0
RNA, Transfer, Glu
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
751-758Commentaires et corrections
Type : CommentIn
Type : ErratumIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Záhonová, K., Kostygov, A. Y., Ševčíková, T., Yurchenko, V. & Eliáš, M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369 (2016).
pubmed: 27593378
doi: 10.1016/j.cub.2016.06.064
Bachvaroff, T. R. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS ONE 14, e0212912 (2019).
pubmed: 30818350
pmcid: 6394959
doi: 10.1371/journal.pone.0212912
Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016).
pubmed: 27426948
pmcid: 4967479
doi: 10.1016/j.cell.2016.06.020
Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol. Biol. Evol. 33, 2885–2889 (2016).
pubmed: 27501944
pmcid: 5062323
doi: 10.1093/molbev/msw166
Sella, G. & Ardell, D. H. The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J. Mol. Evol. 63, 297–313 (2006).
pubmed: 16838217
doi: 10.1007/s00239-004-0176-7
Koonin, E. V. & Novozhilov, A. S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009).
pubmed: 19117371
pmcid: 3293468
doi: 10.1002/iub.146
Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017).
pubmed: 27870834
doi: 10.1038/nsmb.3330
Shulgina, Y. & Eddy, S. R. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 10, e71402 (2021).
pubmed: 34751130
pmcid: 8629427
doi: 10.7554/eLife.71402
Keeling, P. J. Evolution of the genetic code. Curr. Biol. 26, R851–R853 (2016).
pubmed: 27676305
doi: 10.1016/j.cub.2016.08.005
Baranov, P. V., Atkins, J. F. & Yordanova, M. M. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16, 517–529 (2015).
pubmed: 26260261
doi: 10.1038/nrg3963
Keeling, P. J. & Leander, B. S. Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J. Mol. Biol. 326, 1337–1349 (2003).
pubmed: 12595248
doi: 10.1016/S0022-2836(03)00057-3
Karpov, S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164, 195–205 (2013).
pubmed: 23058793
doi: 10.1016/j.protis.2012.08.001
Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 11, 65–74 (2001).
pubmed: 11231122
doi: 10.1016/S0960-9822(01)00028-8
Sanchez-Silva, R., Villalobo, E., Morin, L. & Torres, A. A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr. Biol. 13, 442–447 (2003).
pubmed: 12620196
doi: 10.1016/S0960-9822(03)00126-X
Osawa, S. & Jukes, T. H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28, 271–278 (1989).
pubmed: 2499683
doi: 10.1007/BF02103422
Schultz, D. W. & Yarus, M. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235, 1377–1380 (1994).
pubmed: 8107079
doi: 10.1006/jmbi.1994.1094
Sengupta, S. & Higgs, P. G. A unified model of codon reassignment in alternative genetic codes. Genetics 170, 831–840 (2005).
pubmed: 15781705
pmcid: 1450412
doi: 10.1534/genetics.104.037887
Lukeš, J. et al. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466–480 (2018).
pubmed: 29605546
doi: 10.1016/j.pt.2018.03.002
Maslov, D. A. et al. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27 (2019).
pubmed: 29898792
doi: 10.1017/S0031182018000951
He, F. & Jacobson, A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49, 339–366 (2015).
pubmed: 26436458
pmcid: 4837945
doi: 10.1146/annurev-genet-112414-054639
Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745–757 (2014).
pubmed: 25192364
doi: 10.1016/j.molcel.2014.08.005
Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016).
pubmed: 26554031
pmcid: 4691835
doi: 10.1261/rna.053447.115
Sladic, R. T., Lagnado, C. A., Bagley, C. J. & Goodall, G. J. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271, 450–457 (2004).
pubmed: 14717712
doi: 10.1046/j.1432-1033.2003.03945.x
Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A. & Simpson, L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18, 7056–7062 (1999).
pubmed: 10601027
pmcid: 1171768
doi: 10.1093/emboj/18.24.7056
Wohlgamuth-Benedum, J. M. et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J. Biol. Chem. 284, 23947–23953 (2009).
pubmed: 19574216
pmcid: 2781988
doi: 10.1074/jbc.M109.029421
Paris, Z. et al. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA(Trp) to decode the UGA codon in Trypanosoma brucei. RNA Biol. 18, 278–286 (2021).
Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).
pubmed: 4933412
doi: 10.1016/0022-2836(71)90362-7
Nenarokova, A. & Paris, Z. tRNAseq analysis of Blastocrithidia nonstop. figshare https://doi.org/10.6084/m9.figshare.17934200.v2 (2022).
Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019).
pubmed: 31020551
pmcid: 6768409
doi: 10.1007/978-1-4939-9173-0_1
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).
pubmed: 14704338
pmcid: 373265
doi: 10.1093/nar/gkh152
Van Haute, L., Powell, C. A. & Minczuk, M. Dealing with an unconventional genetic code in mitochondria: the biogenesis and pathogenic defects of the 5-formylcytosine modification in mitochondrial tRNA(Met). Biomolecules 7, 24 (2017).
pubmed: 28257121
pmcid: 5372736
doi: 10.3390/biom7010024
Agris, P. F. et al. Celebrating wobble decoding: half a century and still much is new. RNA Biol 15, 537–553 (2018).
pubmed: 28812932
doi: 10.1080/15476286.2017.1356562
Beznosková, P., Gunisová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016).
pubmed: 26759455
pmcid: 4748822
doi: 10.1261/rna.054452.115
Beznosková, P., Pavlíková, Z., Zeman, J., Echeverria Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019).
pubmed: 31069379
pmcid: 6614816
doi: 10.1093/nar/gkz346
Pineyro, D., Torres, A. G. & de Pouplana, L. R. In Fungal RNA Biology (eds Sesma, A. & von der Haar, T.) 233–267 (Springer, 2014).
Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015).
pubmed: 26384426
pmcid: 4605324
doi: 10.1093/nar/gkv909
Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).
pubmed: 26245381
pmcid: 4591471
doi: 10.1038/nature14896
Blanchet, S. et al. New insights into stop codon recognition by eRF1. Nucleic Acids Res. 43, 3298–3308 (2015).
pubmed: 25735746
pmcid: 4381064
doi: 10.1093/nar/gkv154
Eliseev, B., Kryuchkova, P., Alkalaeva, E. & Frolova, L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res. 39, 599–608 (2011).
pubmed: 20860996
doi: 10.1093/nar/gkq759
Xue, H., Shen, W., Giege, R. & Wong, J. T. Identity elements of tRNA(Trp). Identification and evolutionary conservation. J. Biol. Chem. 268, 9316–9322 (1993).
pubmed: 8486627
doi: 10.1016/S0021-9258(18)98352-3
Ulmasov, B., Topin, A., Chen, Z., He, S. H. & Folk, W. R. Identity elements and aminoacylation of plant tRNATrp. Nucleic Acids Res. 26, 5139–5141 (1998).
pubmed: 9801311
pmcid: 147961
doi: 10.1093/nar/26.22.5139
Sekine, S. et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J. Mol. Biol. 256, 685–700 (1996).
pubmed: 8642591
doi: 10.1006/jmbi.1996.0118
Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).
pubmed: 34083482
pmcid: 7611380
doi: 10.1126/science.abg3029
Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018).
pubmed: 29284754
doi: 10.1073/pnas.1717806115
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).
pubmed: 28980641
doi: 10.1038/nature24031
Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).
pubmed: 35322228
pmcid: 9446716
doi: 10.1038/s41586-022-04533-3
Janssen, B. D., Diner, E. J. & Hayes, C. S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012).
pubmed: 22736012
pmcid: 3682404
Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998).
pubmed: 9630253
pmcid: 1369633
Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as “nonsense containing” leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999).
pubmed: 10564284
pmcid: 25692
doi: 10.1091/mbc.10.11.3971
Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017).
pubmed: 28442579
pmcid: 5513072
doi: 10.1261/rna.061051.117
Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016).
pubmed: 27033178
pmcid: 5014671
doi: 10.1016/j.ymeth.2016.03.016
Beznosková, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013).
pubmed: 24278036
pmcid: 3836723
doi: 10.1371/journal.pgen.1003962
Kouba, T. et al. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS ONE 7, e40464 (2012).
pubmed: 22792338
pmcid: 3390373
doi: 10.1371/journal.pone.0040464
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Nenarokova, A., Záhonová, K. & Nenarokov, S. The high-throughput sequencing datasets. figshare https://doi.org/10.6084/m9.figshare.21401541 (2022).
Nenarokova, A., Záhonová, K. & Nenarokov, S. Additional data and analyses. figshare https://figshare.com/projects/tRNA_anticodon_stem_length_variations_are_critical_for_stop_codon_reassignment/129167 (2022).
Nenarokov, S. & Nenarokova, A. Seraff/blasto: annotator & utilities for Blastocrithidia project (v1.0.2). Zenodo https://doi.org/10.5281/zenodo.7116082 (2022).
Potěšil, D. MS analysis of B. nonstop proteins. figshare https://doi.org/10.6084/m9.figshare.20105417.v2 (2022).