Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality.


Journal

Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051

Informations de publication

Date de publication:
Mar 2023
Historique:
received: 28 07 2022
accepted: 05 01 2023
revised: 14 12 2022
pubmed: 23 1 2023
medline: 3 3 2023
entrez: 22 1 2023
Statut: ppublish

Résumé

Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.

Identifiants

pubmed: 36683130
doi: 10.1007/s10529-023-03354-2
pii: 10.1007/s10529-023-03354-2
doi:

Substances chimiques

Type VI Secretion Systems 0
Bacterial Proteins 0
Bacterial Secretion Systems 0
Virulence Factors 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

309-331

Subventions

Organisme : Ministry of Science and Technology, India
ID : BT/RLF-2020-21

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080
pubmed: 26979785 pmcid: 4793230 doi: 10.1038/srep23080
Ahmad S, Wang B, Walker MD et al (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 575:674–678
pubmed: 31695193 pmcid: 6883173 doi: 10.1038/s41586-019-1735-9
Allsopp LP, Wood TE, Howard SA et al (2017) RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 114:7707–7712
pubmed: 28673999 pmcid: 5530658 doi: 10.1073/pnas.1700286114
Alteri CJ, Himpsl SD, Zhu K et al (2017) Subtle variation within conserved effector operon gene products contributes to T6SS mediated killing and immunity. PLoS Pathog 13:1–22
doi: 10.1371/journal.ppat.1006729
Aubert Daniel F et al (2016) A Burkholderia type VI effector deamidates Rho GTPases to activate 699 the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19(5):664–674
pubmed: 27133449 doi: 10.1016/j.chom.2016.04.004
Bachman V et al (2015) Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl Trop Dis 9:e0004031
doi: 10.1371/journal.pntd.0004031
Barret M, Egan F, Fargier E, Morrissey JP, O’Gara F (2011) Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 157:1726–1739
pubmed: 21474537 doi: 10.1099/mic.0.048645-0
Basler M, Mekalanos JJ (2012) Type 6 secretion dynamics within and between bacterial cells. Science 337:815
pubmed: 22767897 pmcid: 3557511 doi: 10.1126/science.1222901
Basler M, Pilhofer M, Henderson PG, Jensen JG, Mekalanos J (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186
pubmed: 22367545 pmcid: 3527127 doi: 10.1038/nature10846
Bendor L, Weyrich LS, Linz B, Rolin OY, Taylor DL, Goodfield LL, Smallridge WE, Kennett MJ, Harvill ET (2015) Type VI secretion system of Bordetella bronchiseptica and adaptive immune components limit intracellular survival during infection. PLoS ONE 10:e0140743
pubmed: 26485303 pmcid: 4618060 doi: 10.1371/journal.pone.0140743
Bernal P, Allsopp LP, Filloux A et al (2017) The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 11:972–987
pubmed: 28045455 pmcid: 5363822 doi: 10.1038/ismej.2016.169
Bernal P, Furniss RCD, Fecht S, Leung RCY, Livia Spiga L, Despoina AI, Mavridou DAI, Filloux A (2021) A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci USA 118(7):2008500118
doi: 10.1073/pnas.2008500118
Bernard CS et al (2011) Regulation of type VI secretion gene clusters by g54 and cognate enhancer binding proteins. J Bacteriol 193:2158–2167
pubmed: 21378190 pmcid: 3133059 doi: 10.1128/JB.00029-11
Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8
pubmed: 18289922 doi: 10.1016/j.mib.2008.01.006
Bladergroen MR, Badelt K, Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:53–64
pubmed: 12580282 doi: 10.1094/MPMI.2003.16.1.53
Blondel CJ, Jimenez JC, Leiva LE, Alvarez SA, Pinto BI, Contreras F, Pezoa D, Santiviago CA, Contreras I (2013) The type VI secretion system encoded in Salmonella pathogenicity island 19 is required for Salmonella enterica serotype Gallinarum survival within infected macrophages. Infect Immun 81:1207–1220
pubmed: 23357385 pmcid: 3639620 doi: 10.1128/IAI.01165-12
Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, Zaldı¨var M, Contreras I, Andrews-Polymenis HL, Santiviago CA, (2010) Contribution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS ONE 2010:2015
Blokesch M (2012) Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 14:1898–1912
pubmed: 22222000 doi: 10.1111/j.1462-2920.2011.02689.x
Bock D, Medeiros JM, Tsao HF, Penz T, Weiss GL, Aistleitner K et al (2017) In situ architecture, function, and evolution of a contractile injection system. Science 357:713–717
pubmed: 28818949 pmcid: 6485382 doi: 10.1126/science.aan7904
Borgeaud S et al (2015) The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67
pubmed: 25554784 doi: 10.1126/science.1260064
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104
pubmed: 19284603 pmcid: 2660368 doi: 10.1186/1471-2164-10-104
Brodmann M, Dreier RF, Broz P, Basler M (2017) Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 8:15853
pubmed: 28621333 pmcid: 5481754 doi: 10.1038/ncomms15853
Bröms JE, Sjöstedt A, Lavander M (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signalling. Front Microbiol 1:136
pubmed: 21687753 pmcid: 3109350 doi: 10.3389/fmicb.2010.00136
Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S (2013) Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288:7618–7625
pubmed: 23341465 pmcid: 3597803 doi: 10.1074/jbc.M112.436725
Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E (2015) The type VI secretion TssEFGK-VgrG phage-like base plate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet 11:e1005545
pubmed: 26460929 pmcid: 4604203 doi: 10.1371/journal.pgen.1005545
Brunet YR, Henin J, Celia H, Cascales E (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15:315–321
pubmed: 24488256 pmcid: 3989698 doi: 10.1002/embr.201337936
Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL et al (2011) The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 79:1512–1525
pubmed: 21300775 pmcid: 3067527 doi: 10.1128/IAI.01218-10
Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L, Dong TG (2018) A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3:632–640
pubmed: 29632369 doi: 10.1038/s41564-018-0144-4
Cantlay S, Haggerty K, Horzempa J (2020) OpiA, a type six secretion system substrate, localizes to the cell pole and plays a role in bacterial growth and viability in francisella tularensis LVS. J Bacteriol 202:e00048-20
Cascales E et al (2007) Comprehensive review of colicins, the best characterized of the bacteriocins. Colicin Biol Microbiol Mol Biol Rev 71:158–229
pubmed: 17347522 doi: 10.1128/MMBR.00036-06
Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE et al (2016) Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci USA 113:3627–3632
pubmed: 26951680 pmcid: 4822612 doi: 10.1073/pnas.1522510113
Cheng ZX, Gong QY, Wang Z, Chen ZG, Ye JZ, Li J et al (2017) Edward siellatarda tunes tricarboxylic acid cycle to evade complement-mediated killing. Front Immunol 8:1706
pubmed: 29270172 pmcid: 5725468 doi: 10.3389/fimmu.2017.01706
Cheng AT, Ottemann KM, Yildiz FH (2015) Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog 11:e1004933
pubmed: 26000450 pmcid: 4441509 doi: 10.1371/journal.ppat.1004933
Chen WJJ, Kuo TYY, Hsieh FCC, Chen PYY, Wang CSS, Shih YLL et al (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 6:32950
pubmed: 27605490 pmcid: 5015096 doi: 10.1038/srep32950
Chen C, Yang X, Shen X (2019) Confirmed and potential roles of bacterial T6SSs in the intestinal ecosystem. Front Microbiol 10:1484
pubmed: 31316495 pmcid: 6611333 doi: 10.3389/fmicb.2019.01484
Chien CF, Liu CY, Lu YY et al (2020) HSI-II gene cluster of Pseudomonas syringae pv. tomato DC3000 encodes a functional type VI secretion system required for interbacterial competition. Front Microbiol 11:1–14
doi: 10.3389/fmicb.2020.01118
Chou S et al (2012) Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep 1:656–664
pubmed: 22813741 pmcid: 3401384 doi: 10.1016/j.celrep.2012.05.016
Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7:265–276
pubmed: 20413095 pmcid: 2859213 doi: 10.1016/j.chom.2010.03.004
Cianfanelli FR, AlcoforadoDiniz J, Guo M, De Cesare V, Trost M, Coulthurst SJ (2016) VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12:e1005735
pubmed: 27352036 pmcid: 4924876 doi: 10.1371/journal.ppat.1005735
Coyne MJ, Roelofs KG, Comstock LE (2016) Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 17:58
pubmed: 26768901 pmcid: 4714493 doi: 10.1186/s12864-016-2377-z
Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE (2014) Evidence of extensive DNA transfer between bacteroidales species within the human gut. Mbio 5:e01305–e01314
pubmed: 24939888 pmcid: 4073490 doi: 10.1128/mBio.01305-14
Coulthurst S (2019) The type VI secretion system: a versatile bacterial weapon. Microbiology 165:503–515
pubmed: 30893029 doi: 10.1099/mic.0.000789
Dalia AB et al (2014) Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. Mol Bio 5:e01028-e1113
Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138
pubmed: 26700108 doi: 10.1128/MMBR.00037-15
de Bruin OM, Ludu JS, Nano FE (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1
pubmed: 17233889 pmcid: 1794414 doi: 10.1186/1471-2180-7-1
Decoin V, Barbey C, Bergeau D et al (2014) A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS ONE 9(2):e89411
pubmed: 24551247 pmcid: 3925238 doi: 10.1371/journal.pone.0089411
De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits TH (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genom 12:576
doi: 10.1186/1471-2164-12-576
de Moraes MH, Hsu F, Huang D et al (2021) An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. Elife 10:1–78
doi: 10.7554/eLife.62967
de Pace F, Nakazato G, Pacheco A, De Paiva JB, Sperandio V, Da Silveira WD (2010) The type VI secretion system plays a role in type 1 fimbriae expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun 78:4990–4998
pubmed: 20855516 pmcid: 2981326 doi: 10.1128/IAI.00531-10
de Pace F, de Paiva JB, Nakazato G, Lancellotti M, Sirsili MP, Stehling EG, da Silveira WD, Sperandio V (2011) Characterization of icmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology 157:2954–2962
pubmed: 21778203 pmcid: 3353391 doi: 10.1099/mic.0.050005-0
Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013a) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in vibrio cholerae. Proc Natl Acad Sci USA 110:2623–2628
pubmed: 23362380 pmcid: 3574944 doi: 10.1073/pnas.1222783110
Dong C et al (2013b) Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem J 454:59–68
pubmed: 23730712 doi: 10.1042/BJ20130193
Douzi B, Spinelli S, Blangy S, Roussel A, Durand E, Brunet YR et al (2014) Crystal structure and self-interaction of the type VI secretion tail tube protein from enteroaggregative Escherichia coli. PLoS ONE 9:e86918
pubmed: 24551044 pmcid: 3925092 doi: 10.1371/journal.pone.0086918
Douzi B, Brunet YR, Spinelli S, Lensi V, Legrand P, Blangy S et al (2016) Structure and specificity of the type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci Rep 6:34405
pubmed: 27698444 pmcid: 5048182 doi: 10.1038/srep34405
Durand E, Zoued A, Spinelli S, Watson PJ, Aschtgen MS, Journet L, Cambillau C, Cascales E (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287:14157–14168
pubmed: 22371492 pmcid: 3340138 doi: 10.1074/jbc.M111.338731
Dutta P, Jijumon AS, Mazumder M, Dileep D, Mukhopadhyay AK, Gourinath S et al (2019) Presence of actin binding motif in VgrG-1 toxin of Vibrio cholerae reveals the molecular mechanism of actin cross-linking. Int J Biol Macromol 133:775–785
pubmed: 31002899 doi: 10.1016/j.ijbiomac.2019.04.026
Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM et al (2016) Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intra macrophage growth. Cell Host Microbe 20:573–583
pubmed: 27832588 pmcid: 5384264 doi: 10.1016/j.chom.2016.10.008
Feria JM, Valvano MA (2020) An overview of anti-eukaryotic effectors. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.584751
doi: 10.3389/fcimb.2020.584751
Flaugnatti N, Le TTH, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Journet L (2016) A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99:1099–1118
pubmed: 26714038 doi: 10.1111/mmi.13292
Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA, Canaan S, Journet L (2020) Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO J 30:e104129
Forster A, Planamente S, Manoli E, Lossi NS, Freemont PS, Filloux A (2014) Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC, and the accessory protein TagJ/HsiE1 distinguishes type VI secretion classes. J Biol Chem 289:33032–33043
pubmed: 25305017 pmcid: 4239648 doi: 10.1074/jbc.M114.600510
French CT, Toesca IJ, Wu TH, Teslaa T, Beaty SM, Wong W, Liu M, Schroder I, Chiou PY, Teitell MA et al (2011) Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci USA 108:12095–12100
pubmed: 21730143 pmcid: 3141958 doi: 10.1073/pnas.1107183108
Fu Y et al (2013) Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14:652–663
pubmed: 24331463 pmcid: 3951154 doi: 10.1016/j.chom.2013.11.001
García-Bayona L, Coyne MJ, Comstock LE (2021) Mobile Type VI secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering. PLoS Genet. https://doi.org/10.1371/journal.pgen.1009541
doi: 10.1371/journal.pgen.1009541 pubmed: 33901198 pmcid: 8102008
Gavrilin MA, Abdelaziz DHA, Mostafa M, Abdulrahman BA, Grandhi J, Akhter A, Khweek AA, Aubert DF, Valvano MA, Wewers MD et al (2012) Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol 188:3469–3477
pubmed: 22368275 doi: 10.4049/jimmunol.1102272
Geli V, Baty D, Pattus F, Lazdunski C (1989) Topology and function of the integral membrane protein conferring immunity to colicin A. Mol Microbiol 3:679–687
pubmed: 2668695 doi: 10.1111/j.1365-2958.1989.tb00216.x
Geller AM, Pollin I, Zlotkin D, Danov A, Nachmias N, Andreopoulos WB, Shemesh K, Levy A (2021) The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins. Nat Commun 12:3743
pubmed: 34145238 pmcid: 8213781 doi: 10.1038/s41467-021-23777-7
Haapalainen M, Mosorin H, Dorati F et al (2012) Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J Bacteriol 194:4810–4822
pubmed: 22753062 pmcid: 3430304 doi: 10.1128/JB.00611-12
Hachani A, Wood TE, Filoux A (2017) Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81–93
doi: 10.1016/j.mib.2015.11.006
Hare JM, Ferrell JC, Witkowski TA, Grice AN (2014) Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi. PLoS ONE 9(4):e93861
pubmed: 24709747 pmcid: 3978071 doi: 10.1371/journal.pone.0093861
Ho BT, Basler M, Mekalanos JJ (2013) Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342:250–253
pubmed: 24115441 pmcid: 4034461 doi: 10.1126/science.1243745
Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228
pubmed: 327932 pmcid: 170856 doi: 10.1128/aem.33.5.1225-1228.1977
Hopf V, Gohler A, Eske-Pogodda K, Bast A, Steinmetz I, Breitbach K (2014) BPSS1504, a cluster 1 Type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun 82:2006–2015
pubmed: 24595140 pmcid: 3993457 doi: 10.1128/IAI.01544-14
Houot L et al (2010) The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067
pubmed: 20400550 pmcid: 2901703 doi: 10.1128/JB.00213-10
Ishikawa T et al (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS ONE 4:e6734
pubmed: 19701456 pmcid: 2726435 doi: 10.1371/journal.pone.0006734
Ishikawa T et al (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80:575–584
pubmed: 22083711 pmcid: 3264300 doi: 10.1128/IAI.05510-11
Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469
pubmed: 25239977 pmcid: 4248704 doi: 10.1128/EC.00213-14
Kalindamar S, Kordon AO, Abdelhamed H, Tan W, Pinchuk LM, Lesya A (2019) Edward siellaictaluri evpP is required for colonization of channel catfish ovary cells and necrosis in anterior kidney macrophages. Cell Microbiol 19:e13135
Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35
pubmed: 24660164 pmcid: 3952080 doi: 10.3389/fcimb.2014.00035
Kitaoka M et al (2011) VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol 193:6471–6482
pubmed: 21949076 pmcid: 3232897 doi: 10.1128/JB.05414-11
Koskiniemi S et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA 110:7032–7037
pubmed: 23572593 pmcid: 3637788 doi: 10.1073/pnas.1300627110
Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A, Wendler P (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8:20–30
pubmed: 24953649 doi: 10.1016/j.celrep.2014.05.034
Kudryashev M, Wang RYR, Brackmann M, Scherer S, Maier T, Baker D et al (2015) Structure of the type VI secretion system contractile sheath. Cell 160:952–962
pubmed: 25723169 pmcid: 4359589 doi: 10.1016/j.cell.2015.01.037
Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J, Botka G, Graffam ME, Ge Z, Fox JG (2012) Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE 7(8):e42842
pubmed: 22952616 pmcid: 3428339 doi: 10.1371/journal.pone.0042842
Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, BialekDavenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S et al (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 12:41
pubmed: 24885329 pmcid: 4068068 doi: 10.1186/1741-7007-12-41
Lesic B, Starkey M, He J et al (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155:2845–2855
pubmed: 19497948 pmcid: 2888175 doi: 10.1099/mic.0.029082-0
Lewis JM, Deveson Lucas D, Harper M, Boyce JD (2019) Systematic identification and analysis of Acinetobacter baumannii type VI secretion system effector and immunity components. Front Microbiol 10:2440
pubmed: 31736890 pmcid: 6833914 doi: 10.3389/fmicb.2019.02440
Liang X, Moore R, Wilton M, Wong MJQ, Lam L, Dong TG (2015) Identification of divergent type VI secretion effectors using aconserved chaperone domain. Proc Natl Acad Sci USA 112:9106–9111
pubmed: 26150500 pmcid: 4517263 doi: 10.1073/pnas.1505317112
Lin J, Zhang W, Cheng J et al (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 8:14888
pubmed: 28348410 pmcid: 5379069 doi: 10.1038/ncomms14888
Liu H, Coulthurst SJ, Pritchard L et al (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plantpathogen Pectobacterium atrosepticum. PLoS Pathog 4(6):e100093
doi: 10.1371/journal.ppat.1000093
Logger L, Aschtgen MS, Guérin M, Cascales E, Durand E (2016) Molecular dissection of the interface between the type VI secretion TssM cytoplasmic domain and the TssG baseplate component. J Mol Biol 428:4424–4437
pubmed: 27600411 doi: 10.1016/j.jmb.2016.08.032
Lossi NS, Manoli E, Forster A et al (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath like structure. J Biol Chem 288:7536–7548
pubmed: 23341461 pmcid: 3597794 doi: 10.1074/jbc.M112.439273
Lo Scrudato M, Blokesch M (2013) A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 41:3644–3658
pubmed: 23382174 pmcid: 3616704 doi: 10.1093/nar/gkt041
Loutet SA, Valvano MA (2010) A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 78:4088–4100
pubmed: 20643851 pmcid: 2950345 doi: 10.1128/IAI.00212-10
Ma LS, Hachani A, Lin JS et al (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104
pubmed: 24981331 pmcid: 4096383 doi: 10.1016/j.chom.2014.06.002
Ma AT, McAuley SB, Pukatzki S, Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5:234–243
pubmed: 19286133 pmcid: 3142922 doi: 10.1016/j.chom.2009.02.005
Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA 107:4365–4370
pubmed: 20150509 pmcid: 2840160 doi: 10.1073/pnas.0915156107
Ma J, Pan Z, Huang J, Sun M, Lu C, Yao H (2017) The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 8:1189–1202
pubmed: 28060574 pmcid: 5711352 doi: 10.1080/21505594.2017.1279374
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629
pubmed: 22672649 pmcid: 6638704 doi: 10.1111/j.1364-3703.2012.00804.x
Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK (2020) Molecular characterization of mega plasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 10:12514
pubmed: 32719325 pmcid: 7385129 doi: 10.1038/s41598-020-69155-z
Marchi M, Boutin M, Gazengel K, Rispe C, Gauthier J, Lebreton L et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep 5:393–403
pubmed: 23754720 doi: 10.1111/1758-2229.12048
Mattinen L, Nissinen R, Riipi T, Kalkkinen N, Pirhonen M (2007) Host extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 7:3527–3537
pubmed: 17726675 doi: 10.1002/pmic.200600759
Meibom KL (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827
pubmed: 16357262 doi: 10.1126/science.1120096
Meibom KL et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529
pubmed: 14983042 pmcid: 356983 doi: 10.1073/pnas.0308707101
Metzger LC et al (2016) Independent regulation of Type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 15:951–958
pubmed: 27117415 pmcid: 4858559 doi: 10.1016/j.celrep.2016.03.092
Miller MB et al (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314
pubmed: 12176318 doi: 10.1016/S0092-8674(02)00829-2
Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13:3128–3138
pubmed: 21955777 doi: 10.1111/j.1462-2920.2011.02595.x
Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530
pubmed: 16763151 pmcid: 2800167 doi: 10.1126/science.1128393
Mulder DT, Cooper CA, Coombes BK (2012) Type VI secretion system associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun 80:1996–2007
pubmed: 22493086 pmcid: 3370595 doi: 10.1128/IAI.06205-11
Nano FE, Schmerk C (2007) The Francisella pathogenicity island. Ann NY Acad Sci 1105:122–137
pubmed: 17395722 doi: 10.1196/annals.1409.000
Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KK, Roberts MJ et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436
pubmed: 15375123 pmcid: 516616 doi: 10.1128/JB.186.19.6430-6436.2004
Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from waste water–a model system in environmental biotechnology. Curr Opin Biotechnol 23:452–459
pubmed: 22197171 doi: 10.1016/j.copbio.2011.11.027
Nykyri J, Niemi O, Koskinen P et al (2012) Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8(11):e1003013
pubmed: 23133391 pmcid: 3486870 doi: 10.1371/journal.ppat.1003013
O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693
pubmed: 16819463 pmcid: 1500832 doi: 10.1038/sj.embor.7400731
Pezoa D, Blondel CJ, Silva CA, Yang HJ, Andrews-Polymenis HL, Santiviago CA, Contreras I (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res 45:1–9
doi: 10.1186/1297-9716-45-2
Pezoa D, Yang HJ, Blondel CJ, Santiviago CA, Andrews Polymenis HL, Contreras I (2013) The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS ONE 8(5):e63917
pubmed: 23691117 pmcid: 3653874 doi: 10.1371/journal.pone.0063917
Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA
pubmed: 21733841 pmcid: 3191042 doi: 10.1074/jbc.M111.253377
Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A (2016) TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35:1613–1627
pubmed: 27288401 pmcid: 4969574 doi: 10.15252/embj.201694024
Poole SJ et al (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 7:e1002217
pubmed: 21829394 pmcid: 3150448 doi: 10.1371/journal.pgen.1002217
Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Lau GW, Levesque RC (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5:1294–1308
pubmed: 14641575 doi: 10.1046/j.1462-2920.2003.00542.x
Pukatzki S et al (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:1528–1533
pubmed: 16432199 pmcid: 1345711 doi: 10.1073/pnas.0510322103
Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104:15508–15513
pubmed: 17873062 pmcid: 2000545 doi: 10.1073/pnas.0706532104
Ray A, Schwartz N, de Souza SM, Zhang J, Orth K, Salomon D (2017) Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Rep 18:1978–1990
pubmed: 28912123 pmcid: 5666596 doi: 10.15252/embr.201744226
Repizo GD, Gagne S, Foucault-Grunenwald ML, Borges V, Charpentier X, Limansky AS, Gomes JP, Viale AM, Salcedo SP (2015) Differential role of the T6SS in Acinetobacter baumannii virulence. PLoS One 10:1–20
doi: 10.1371/journal.pone.0138265
Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081
pubmed: 18419525 doi: 10.1086/533452
Roesch LF et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J 1:283–290
pubmed: 18043639 doi: 10.1038/ismej.2007.53
Ross BD, Verster AJ, Radey MC et al (2019) Human gut bacteria contain acquired interbacterial defence systems. Nature 575:224–228
pubmed: 31666699 pmcid: 6938237 doi: 10.1038/s41586-019-1708-z
Rogers A et al (2016) The LonA protease regulates biofilm formation, motility, virulence, and the type VI secretion system in Vibrio cholerae. J Bacteriol 198:973–985
pubmed: 26755629 pmcid: 4772603 doi: 10.1128/JB.00741-15
Rogge ML, Thune RL (2011) Regulation of the Edward siellaictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl Environ Microbiol 77:4293–4302
pubmed: 21551284 pmcid: 3127708 doi: 10.1128/AEM.00195-11
Rubio T, Oyanedel D, Labreuche Y et al (2019) Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections. Proc Natl Acad Sci USA 116:14238–14247
pubmed: 31221761 pmcid: 6628822 doi: 10.1073/pnas.1905747116
Russell AB et al (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508–512
pubmed: 23552891 pmcid: 3652678 doi: 10.1038/nature12074
Russell AB et al (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347
pubmed: 21776080 pmcid: 3146020 doi: 10.1038/nature10244
Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD (2014) A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16:227–236
pubmed: 25070807 pmcid: 4136423 doi: 10.1016/j.chom.2014.07.007
Salomon D, Gonzalez H, Updegraff BL et al (2013) Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 8:e61086
pubmed: 23613791 pmcid: 3628861 doi: 10.1371/journal.pone.0061086
Salomon D, Klimko JA, Trudgian DC et al (2015) Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog 11:1–20
doi: 10.1371/journal.ppat.1005128
Sana TG, Flaugnatti N, Lugo KA et al (2016) Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:5044–5051
doi: 10.1073/pnas.1608858113
Sana TG, Soscia C, Tonglet CMM, Garvis S, Bleve S (2013) Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS ONE 8:e76030
pubmed: 24204589 pmcid: 3804575 doi: 10.1371/journal.pone.0076030
Santin YG, Doan T, Lebrun R, Espinosa L, Journet L, Cascales E (2018) In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 3:1304
pubmed: 30275513 doi: 10.1038/s41564-018-0234-3
Sarris PF, Skandalis N, Kokkinidis M et al (2010) In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol 11:795–804
pubmed: 21091602 pmcid: 6640432
Savary S, Ficke A, Aubertot JN et al (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537
doi: 10.1007/s12571-012-0200-5
Schlieker C, Zentgraf H, Dersch P, Mogk A (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem 386:1115–1127
pubmed: 16307477 doi: 10.1515/BC.2005.128
Schneider JP et al (2019) Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems. EMBO J 38:e100825
pubmed: 31403721 pmcid: 6745524 doi: 10.15252/embj.2018100825
Schwarz S, Hood RD, Mougous JD (2010a) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537
pubmed: 20961764 pmcid: 2991376 doi: 10.1016/j.tim.2010.09.001
Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD (2010b) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068
pubmed: 20865170 pmcid: 2928800 doi: 10.1371/journal.ppat.1001068
Schwarz S, Singh P, Robertson JD, LeRoux M, Skerrett SJ, Goodlett DR et al (2014) VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82:1445–1452
pubmed: 24452686 pmcid: 3993412 doi: 10.1128/IAI.01368-13
Shao Y, Bassler BL (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol 92:921–930
pubmed: 24698180 pmcid: 4038675 doi: 10.1111/mmi.12599
Shanahan F (2002) The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol 16:915–931
pubmed: 12473298 doi: 10.1053/bega.2002.0342
Sha J, Rosenzweig JA, Kozlova EV, Wang S, Erova TE, Kirtley ML, van Lier CJ, Chopra AK (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 159:1120–1135
pubmed: 23519162 pmcid: 3709694 doi: 10.1099/mic.0.063495-0
Shikuma NJ, Yildiz FH (2009) Identification and characterization of OscR, a transcriptional regulator involved in Osmolarity adaptation in Vibrio cholerae. J Bacteriol 191:4082–4096
pubmed: 19329635 pmcid: 2698489 doi: 10.1128/JB.01540-08
Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353
pubmed: 23925114 pmcid: 3792578 doi: 10.1038/nature12453
Shyntum DY, Theron J, Venter SN, Moleleki LN, Toth IK, Coutinho TA (2015) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact 28:420–431
pubmed: 25411959 doi: 10.1094/MPMI-07-14-0219-R
Si M, Zhao C, Burkinshaw B et al (2017) Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci USA 114:2233–2242
doi: 10.1073/pnas.1614902114
Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, Mougous JD (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51:584–593
pubmed: 23954347 doi: 10.1016/j.molcel.2013.07.025
Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE, Basler M et al (2020) The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 18:3000720
doi: 10.1371/journal.pbio.3000720
Soria-Bustos J et al (2020) Two type VI secretion systems of Enterobacter cloacae are required for bacterial competition, cell adherence and intestinal colonization. Front Microbiol. https://doi.org/10.3389/fmicb.2020.560488
doi: 10.3389/fmicb.2020.560488 pubmed: 33072020 pmcid: 7541819
Srinivasa Rao PS, Yamada Y, Yuen PT, Ka YL (2004) Use of proteomics to identify novel virulence determinants that are required for Edward siellatarda pathogenesis. Mol Microbiol 53:573–586
doi: 10.1111/j.1365-2958.2004.04123.x
Steele MI, Kwong WK, Whiteley M et al (2017) Diversification of type VI secretion system toxins reveals ancient antagonism among Bee gut microbes. Lindow SE (ed). Mol Biol 8:146–155
Storey D, Mcnally A, Strand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I, Elmore B et al (2020) Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 16:e1007969
pubmed: 32191774 pmcid: 7108748 doi: 10.1371/journal.ppat.1007969
Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44:344–361
pubmed: 18037263 doi: 10.1016/j.micpath.2007.10.005
Tan J, Yang DH, Wang Z, Zheng X, Zhang YX, Liu Q (2019) EvpP inhibits neutrophils recruitment via Jnk-caspy inflammasome signalling in vivo. Fish Shellfish Immun 92:851–860
doi: 10.1016/j.fsi.2019.05.051
Tamber S, Montgomery A, Eloranta K et al (2020) Enumeration and survival of Salmonella enterica in live oyster shellstock harvested from Canadian waters. J Food Prot 83:6–12
pubmed: 31799879 doi: 10.4315/0362-028X.JFP-19-318
Tian Y, Zhao Y, Wu X, Liu F, Hu B, Walcott RR (2015) The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol Plant Pathol 16:38–47
pubmed: 24863458 doi: 10.1111/mpp.12159
Toesca IJ, French CT, Miller JF (2014) The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by Pseudomallei group Burkholderia species. Infect Immun 82:1436–1444
pubmed: 24421040 pmcid: 3993413 doi: 10.1128/IAI.01367-13
Townsley L et al (2016) Response of Vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol 82:4441–4452
pubmed: 27208110 pmcid: 4959209 doi: 10.1128/AEM.00807-16
Trunk K, Peltier J, Liu Y et al (2018) The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3(8):920–931
pubmed: 30038307 pmcid: 6071859 doi: 10.1038/s41564-018-0191-x
Unni R, Pintor KL, Diepold A, Unterweger D (2022) Presence and absence of type VI secretion systems in bacteria. Microbiology. https://doi.org/10.1099/mic.0.001151
doi: 10.1099/mic.0.001151 pubmed: 35467500
Unterweger D, Miyata ST, Bachmann V et al (2014) The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 5:1–9
doi: 10.1038/ncomms4549
Unterweger D, Kostiuk B, Ötjengerdes R, Wilton A, Diaz-Satizabal L, Pukatzki S (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34:2198–2210
pubmed: 26194724 pmcid: 4557670 doi: 10.15252/embj.201591163
Vacheron J, Pechy-Tarr M, Brochet S et al (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J 13:1318–1329
pubmed: 30683920 pmcid: 6474223 doi: 10.1038/s41396-019-0353-8
Wan B, Zhang Q, Ni J, Li S, Wen D, Li J et al (2017) Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog 13:e1006246
pubmed: 28288207 pmcid: 5363993 doi: 10.1371/journal.ppat.1006246
Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y et al (2015) Type VI secretion System transports Zn
pubmed: 26134274 pmcid: 4489752 doi: 10.1371/journal.ppat.1005020
Wang J, Brodmann M, Basler M (2019) Assembly and subcellular localization of bacterial type VI secretion systems. Ann Rev Microbiol 73:621–638
doi: 10.1146/annurev-micro-020518-115420
Wang T, Hu Z, Du X et al (2020) A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Mol Microbiol 114:308–321
pubmed: 32279364 pmcid: 8011994 doi: 10.1111/mmi.14513
Wang M, Luo Z, Du H, Xu S, Ni B, Zhang H, Sheng X, Xu H, Huang X (2011) Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol 63:22–31
pubmed: 21487806 doi: 10.1007/s00284-011-9935-z
Watve SS et al (2015) CytR Is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS ONE 10:e0138834
pubmed: 26401962 pmcid: 4581735 doi: 10.1371/journal.pone.0138834
Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ et al (2016) Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. Mbio 7:e01253-e1316
pubmed: 27729508 pmcid: 5061870 doi: 10.1128/mBio.01253-16
Wettstadt S, Wood TE, Fecht S, Filloux A (2019) Delivery of the Pseudomonas aeruginosa phospholipase effectors PldA and PldB in a VgrG- and H2–T6SS-dependent manner. Front Microbiol 10:1718
pubmed: 31417515 pmcid: 6684961 doi: 10.3389/fmicb.2019.01718
Weyrich LS, Rolin OY, Muse SJ, Park J, Spidale N, Kennett MJ, Hester SE, Chen C, Dudley EG, Harvill ET (2012) A type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo. PLoS ONE 7(10):e45892
pubmed: 23071529 pmcid: 3470547 doi: 10.1371/journal.pone.0045892
Wexler AG, Bao Y, Whitney JC et al (2016) Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc Natl Acad Sci USA 113:3639–3644
pubmed: 26957597 pmcid: 4822603 doi: 10.1073/pnas.1525637113
Whitney JC et al (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 288:26616–26624
pubmed: 23878199 pmcid: 3772208 doi: 10.1074/jbc.M113.488320
Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR et al (2015) An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163:607–619
pubmed: 26456113 pmcid: 4624332 doi: 10.1016/j.cell.2015.09.027
Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ, Radey MC, Kulasekara HD, Ching MQ, Bullen NP, Bryant D et al (2017) A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 6:e26938
pubmed: 28696203 pmcid: 5555719 doi: 10.7554/eLife.26938
Wood TE, Howard SA, Wettstadt S, Filloux A (2019) PAAR proteins act as the ‘sorting hat’ of the type VI secretion system. Microbiology 165(11):203–218
doi: 10.1099/mic.0.000842
Wu HY, Chung PC, Shih HW et al (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850
pubmed: 18263727 pmcid: 2293243 doi: 10.1128/JB.01775-07
Yamamoto S et al (2011) Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 193:1953–1965
pubmed: 21317321 pmcid: 3133033 doi: 10.1128/JB.01340-10
Yamamoto S et al (2014) Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 91:326–347
pubmed: 24236404 doi: 10.1111/mmi.12462
Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53:497–515
pubmed: 15228530 doi: 10.1111/j.1365-2958.2004.04154.x
Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, Zhang Y, Fang W (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 194:827–835
pubmed: 22535222 doi: 10.1007/s00203-012-0816-z
Zhang W et al (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol 193:351–363
pubmed: 21298257
Zhang L, Xu J, Xu J, Zhang H, He L, Feng J (2014) TssB is essential for virulence and required for type VI secretion system in Ralstonia solanacearum. Microb Pathog 74:1–7
pubmed: 24972114 doi: 10.1016/j.micpath.2014.06.006
Zhang H, Gao Z, Q, Su XD, Dong YH, (2012) Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett 586:3193–3199
pubmed: 22750141 doi: 10.1016/j.febslet.2012.06.036
Zhang H et al (2013) Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem 288:5928–5939
pubmed: 23288853 pmcid: 3581433 doi: 10.1074/jbc.M112.434357
Zhao W, Caro F, Robins W et al (2018) Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359:210–213
pubmed: 29326272 pmcid: 8010019 doi: 10.1126/science.aap8775
Zheng J et al (2010) Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 107:21128–21133
pubmed: 21084635 pmcid: 3000250 doi: 10.1073/pnas.1014998107
Zhou Y, Tao J, Yu H, Ni J, Zeng L, Teng Q, Kim KS, Zhao GP, Guo X, Yao Y (2012) Hcp family proteins secreted via the type VI secretion system co-ordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 80:1243–1251
pubmed: 22184413 pmcid: 3294675 doi: 10.1128/IAI.05994-11
Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134
pubmed: 11854465 pmcid: 122484 doi: 10.1073/pnas.052694299
Zong B, Zhang Y, Wang X, Liu M, Zhang T, Zhu Y et al (2019) Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 10:118–132
pubmed: 30676217 pmcid: 6363058 doi: 10.1080/21505594.2019.1573491
Zoued A, Durand E, Bebeacua C, Brunet YR, Douzi B, Cambillau C et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–32704
pubmed: 23921384 pmcid: 3779704 doi: 10.1074/jbc.M113.499772
Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B, Guzzo M et al (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63
pubmed: 26909579 doi: 10.1038/nature17182

Auteurs

Rajnish Prakash Singh (RP)

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India. manasrajnish2008@gmail.com.

Kiran Kumari (K)

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH