Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 01 2023
Historique:
received: 02 07 2022
accepted: 21 12 2022
entrez: 23 1 2023
pubmed: 24 1 2023
medline: 26 1 2023
Statut: epublish

Résumé

The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and β-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance β-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.

Identifiants

pubmed: 36690613
doi: 10.1038/s41467-022-35726-z
pii: 10.1038/s41467-022-35726-z
pmc: PMC9870890
doi:

Substances chimiques

iperoxo 0
Acetylcholine N9YNS0M02X
Receptors, Muscarinic 0
Receptor, Muscarinic M2 0
Receptors, G-Protein-Coupled 0
GTP-Binding Proteins EC 3.6.1.-
Ligands 0
beta-Arrestins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

376

Informations de copyright

© 2023. The Author(s).

Références

J Mol Cell Cardiol. 1990 Mar;22(3):343-51
pubmed: 2113101
J Struct Biol. 2021 Jun;213(2):107702
pubmed: 33582281
Cell Res. 2019 Dec;29(12):971-983
pubmed: 31776446
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Nature. 2021 Jan;589(7843):620-626
pubmed: 33408414
Cell Res. 2021 Aug;31(8):932-934
pubmed: 33664408
Mol Pharmacol. 2014 Jul;86(1):106-15
pubmed: 24807965
Nature. 2013 Nov 14;503(7475):295-9
pubmed: 24121438
Mol Cell. 2019 Jul 11;75(1):53-65.e7
pubmed: 31103421
Cell. 2021 Apr 1;184(7):1884-1894.e14
pubmed: 33743210
Trends Cell Biol. 2020 Sep;30(9):736-747
pubmed: 32622699
Cell. 2021 Feb 18;184(4):931-942.e18
pubmed: 33571431
Nature. 2019 Aug;572(7767):80-85
pubmed: 31243364
Science. 2019 May 10;364(6440):552-557
pubmed: 31073061
Cell. 2013 Jan 31;152(3):532-42
pubmed: 23374348
Nat Commun. 2021 Nov 4;12(1):6410
pubmed: 34737341
J Biol Chem. 2006 Jan 13;281(2):1261-73
pubmed: 16280323
Nature. 2016 Jul 7;535(7610):182-6
pubmed: 27362234
J Biol Chem. 2015 Aug 7;290(32):19478-88
pubmed: 26100627
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Nat Commun. 2020 Feb 3;11(1):669
pubmed: 32015348
Nat Commun. 2016 Jul 26;7:12298
pubmed: 27457610
Bio Protoc. 2017 Apr 20;7(8):
pubmed: 28480316
Nature. 2017 Jul 6;547(7661):68-73
pubmed: 28607487
J Struct Biol. 2015 Nov;192(2):216-21
pubmed: 26278980
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Nat Chem Biol. 2020 May;16(5):507-512
pubmed: 32152538
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
J Biol Chem. 1998 Feb 27;273(9):5323-30
pubmed: 9478991
Cell. 2019 Jan 24;176(3):448-458.e12
pubmed: 30639101
Cell. 2019 Jan 24;176(3):468-478.e11
pubmed: 30639099
RSC Adv. 2021 Apr 7;11(21):12559-12567
pubmed: 35423811
Nat Commun. 2018 Jan 15;9(1):194
pubmed: 29335412
J Biol Chem. 2007 Nov 30;282(48):34968-76
pubmed: 17890226
Sci Adv. 2021 May 21;7(21):
pubmed: 34020960
Nature. 2013 Dec 5;504(7478):101-6
pubmed: 24256733
Nat Commun. 2020 Feb 14;11(1):885
pubmed: 32060286
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Commun. 2021 Feb 5;12(1):815
pubmed: 33547286
Nat Commun. 2018 Sep 13;9(1):3712
pubmed: 30213947
Mol Pharmacol. 2012 Jan;81(1):41-52
pubmed: 21989256
Nature. 2016 Feb 11;530(7589):237-41
pubmed: 26840483
IUCrJ. 2020 Feb 22;7(Pt 2):294-305
pubmed: 32148857
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2419-E2428
pubmed: 29453275
Commun Biol. 2021 Jul 15;4(1):874
pubmed: 34267316
J Biol Chem. 1997 May 30;272(22):14152-8
pubmed: 9162044
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
Mol Cell. 2020 Nov 5;80(3):485-500.e7
pubmed: 33027691
Front Endocrinol (Lausanne). 2014 May 08;5:68
pubmed: 24847311
J Med Chem. 2017 Nov 22;60(22):9239-9250
pubmed: 29094937
J Biol Chem. 2006 Apr 21;281(16):10856-64
pubmed: 16492667
Nat Rev Drug Discov. 2014 Jul;13(7):549-60
pubmed: 24903776
Br J Pharmacol. 2013 May;169(2):357-70
pubmed: 23062057
J Biol Chem. 2010 Aug 13;285(33):25624-36
pubmed: 20551320
Nature. 2016 Mar 17;531(7594):335-40
pubmed: 26958838
Angew Chem Int Ed Engl. 2015 Dec 21;54(52):15771-6
pubmed: 26568421
Nat Struct Mol Biol. 2021 Mar;28(3):258-267
pubmed: 33633398
Bioorg Med Chem. 1999 Aug;7(8):1539-47
pubmed: 10482446
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
Nat Rev Drug Discov. 2007 Sep;6(9):721-33
pubmed: 17762886
Science. 2020 Feb 21;367(6480):881-887
pubmed: 32079767
Curr Opin Struct Biol. 2016 Dec;41:83-89
pubmed: 27344006
Nat Struct Mol Biol. 2021 Aug;28(8):694-701
pubmed: 34354246
Mol Pharmacol. 2014 Nov;86(5):463-78
pubmed: 25061106
Nature. 2020 Mar;579(7798):297-302
pubmed: 31945772
Cell. 2016 Oct 20;167(3):739-749.e11
pubmed: 27720449
Nature. 2012 Jan 25;482(7386):547-51
pubmed: 22278061
Trends Pharmacol Sci. 2007 Aug;28(8):397-406
pubmed: 17629961
J Biol Chem. 2006 Aug 25;281(34):24506-11
pubmed: 16787921
Proc Jpn Acad Ser B Phys Biol Sci. 2013;89(6):226-56
pubmed: 23759942
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7682-7
pubmed: 17452637
Nat Rev Drug Discov. 2013 Aug;12(8):630-44
pubmed: 23903222
Nat Rev Mol Cell Biol. 2018 Oct;19(10):638-653
pubmed: 30104700
Mol Pharmacol. 2013 Oct;84(4):528-40
pubmed: 23887926
J Struct Biol. 2012 Dec;180(3):519-30
pubmed: 23000701

Auteurs

Jun Xu (J)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.

Qinggong Wang (Q)

Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China.
Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.

Harald Hübner (H)

Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany.

Yunfei Hu (Y)

Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.
Innovation Academy for Precision Measurement Science and Technology, CAS, 430071, Wuhan, China.

Xiaogang Niu (X)

Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China.

Haoqing Wang (H)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Shoji Maeda (S)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Department of Pharmacology, Medical School, University of Michigan 1150 Medical Center Dr., 1315 Medical Science Research Bldg III, Ann Arbor, MI, 48109, USA.

Asuka Inoue (A)

Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.

Yuyong Tao (Y)

Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China.

Peter Gmeiner (P)

Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University, 91058, Erlangen, Germany.

Yang Du (Y)

Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, Chinese University of Hong Kong, 518172, Shenzhen, China. yangdu@cuhk.edu.cn.

Changwen Jin (C)

Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, 100084, Beijing, China. changwen@pku.edu.cn.

Brian K Kobilka (BK)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA. kobilka@stanford.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
Cryoelectron Microscopy Algorithms Image Processing, Computer-Assisted Consensus Software

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH