Dark papillary muscles sign: a novel prognostic marker for cardiac magnetic resonance.
Female
Humans
Papillary Muscles
/ diagnostic imaging
Contrast Media
/ pharmacology
Stroke Volume
Mitral Valve Prolapse
/ diagnostic imaging
Prognosis
Ventricular Function, Left
Gadolinium
/ pharmacology
Magnetic Resonance Imaging, Cine
/ methods
Arrhythmias, Cardiac
Heart Diseases
Tachycardia, Ventricular
/ diagnostic imaging
Magnetic Resonance Spectroscopy
Predictive Value of Tests
Cardiac magnetic resonance
Papillary muscles
Prognosis
Sudden cardiac death
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
23
08
2022
accepted:
23
12
2022
revised:
15
12
2022
medline:
26
6
2023
pubmed:
25
1
2023
entrez:
24
1
2023
Statut:
ppublish
Résumé
The prognostic role of left ventricular (LV) papillary muscle abnormalities in patients with preserved LV systolic ejection fraction (LVEF) is unknown. We sought to evaluate the prognosis role of LV papillary muscle abnormalities by CMR in patients with ventricular arrhythmias, preserved LVEF with no cardiac disease. A total of 391 patients with > 500/24 h premature ventricular complexes and/or with non-sustained ventricular tachycardia (NSVT), preserved LVEF, and no cardiac disease were enrolled. Different features of LV papillary muscles were considered: supernumerary muscles, papillary thickness, the attachment, late gadolinium enhancement (LGE). Dark-Paps was defined as end-systolic signal hypointensity of both papillary muscles in early post-contrast cine CMR images. Mitral valve prolapse, mitral annular disjunction (MAD), and myocardial LGE were considered. Dark-Paps was found in 79 (20%) patients and was more frequent in females. It was associated with higher prevalence of mitral valve prolapse and MAD. During a median follow-up of 2534 days, 22 hard cardiac events occurred. At Kaplan-Meier curve analysis, patients with Dark-Paps were at higher risk of events than those without (p < 0.0001). Dark-Paps was significantly associated with hard cardiac events in all the multivariate models. Dark-Paps improved prognostic estimation when added to NSVT (p = 0.0006), to LGE (p = 0.005) and to a model including NSVT+LGE (p = 0.014). Dark-Paps allowed a significant net reclassification when added to NSVT (NRI 0.30, p = 0.03), to LGE (NRI 0.25, p = 0.04), and to NSVT + LGE (NRI 0.32, p = 0.02). In LV papillary muscles, Dark-Paps is a novel prognostic marker in patients with ventricular arrhythmias and preserved ejection fraction. • Papillary muscle abnormalities are seen in patients with ventricular arrhythmias and preserved left ventricular ejection fraction. • Early post-contrast hypointensity of papillary muscles in end-systolic cine images (Dark-Paps) is a novel prognostic marker in patients with ventricular arrhythmias and preserved ejection fraction. • Dark-Paps had an additive prognostic role over late gadolinium enhancement and non-sustained ventricular tachycardia.
Identifiants
pubmed: 36692598
doi: 10.1007/s00330-023-09400-x
pii: 10.1007/s00330-023-09400-x
pmc: PMC10289986
doi:
Substances chimiques
Contrast Media
0
Gadolinium
AU0V1LM3JT
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4621-4636Informations de copyright
© 2023. The Author(s).
Références
Rajiah P, Fulton NL, Bolen M (2019) Magnetic resonance imaging of the papillary muscles of the left ventricle: normal anatomy, variants, and abnormalities. Insights Imaging 10:83
doi: 10.1186/s13244-019-0761-3
pubmed: 31428880
pmcid: 6702502
McCarthy KP, Ring L, Rana BS (2010) Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur J Echocardiogr 11:i3–i9
doi: 10.1093/ejechocard/jeq153
pubmed: 21078837
Harrigan CJ, Appelbaum E, Maron BJ et al (2008) Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 101:668–673
Maron MS, Olivotto I, Harrigan C et al (2011) Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124:40–47
Lei D, Xie J, Dai Q, Huang Y, Wei X, Mu D et al (2021) Prognostic relevance and clinical features of papillary muscle infarction with mitral regurgitation in patients with ST segment elevation myocardial infarction. J Thorac Dis 13:334–342
doi: 10.21037/jtd-20-3476
pubmed: 33569213
pmcid: 7867801
Schaverien MV, Freedom RM, McCrindle BW (2004) Independent factors associated with outcomes of parachute mitral valve in 84 patients. Circulation 109:2309–2313
doi: 10.1161/01.CIR.0000129269.98460.C8
pubmed: 15117833
Kumar GR, Vaideswar P, Agrawal N, Khandeparkar J, Khandekar J, Patwardhan A (2007) Double chambered ventricles: a retrospective clinicopathological study. Indian J Thorac Cardiovasc Surg 23:135–140
doi: 10.1007/s12055-007-0019-4
Axel L (2004) Papillary muscles do not attach directly to the solid heart wall. Circulation 109:3145–3148
doi: 10.1161/01.CIR.0000134276.06719.F3
pubmed: 15197146
Ranganathan N, Burch G (1969) Gross morphology and arterial supply of the papillary muscles of the left ventricle of man. Am Heart J 77:506–516
doi: 10.1016/0002-8703(69)90160-4
pubmed: 5775669
Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B, Cipriani A et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132:556–566
doi: 10.1161/CIRCULATIONAHA.115.016291
pubmed: 26160859
Narayanan K, Uy-Evanado A, Teodorescu C, Reinier K, Nichols GA, Gunson K et al (2016) Mitral valve prolapse and sudden cardiac arrest in the community. Heart Rhythm 13:498–503
doi: 10.1016/j.hrthm.2015.09.026
pubmed: 26416619
Kitkungvan D, Nabi F, Kim RJ, Bonow RO, Khan MA, Xu J et al (2018) Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J Am Coll Cardiol 72:823–834
doi: 10.1016/j.jacc.2018.06.048
pubmed: 30115220
Perazzolo Marra M, Basso C, De Lazzari M, Rizzo S, Cipriani A, Giorgi B et al (2016) Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging 9:e005030
doi: 10.1161/CIRCIMAGING.116.005030
pubmed: 27516479
pmcid: 4991345
Nalliah CJ, Mahajan R, Elliott AD, Haqqani H, Lau DH, Vohra JK et al (2019) Mitral valve prolapse and sudden cardiac death: a systematic review and meta-analysis. Heart 105:144–151
doi: 10.1136/heartjnl-2017-312932
pubmed: 30242141
Bennett S, Thamman R, Griffiths T, Oxley C, Khan JN, Phan T et al (2019) Mitral annular disjunction: a systematic review of the literature. Echocardiography 36:1549–1558
doi: 10.1111/echo.14437
pubmed: 31385360
Muthukumar L, Jahangir A, Jan MF, Perez Moreno AC (2020) Khandheria BK, et alAssociation between malignant mitral valve prolapse and sudden cardiac death: a review. JAMA Cardiol 5:1053–1061
doi: 10.1001/jamacardio.2020.1412
pubmed: 32936277
Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C et al (2017) Cardiac Magnetic Resonance Working Group of the Italian Society of Cardiology Cardiac MR With Late Gadolinium Enhancement in Acute Myocarditis With Preserved Systolic Function: ITAMY Study. J Am Coll Cardiol 70:1977–1987
Aquaro GD, De Luca A, Cappelletto C, Raimondi F, Bianco F, Botto N et al (2020) Prognostic value of magnetic resonance phenotype in patients with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 75:2753–2765
doi: 10.1016/j.jacc.2020.04.023
pubmed: 32498802
Miller MA, Dukkipati SR, Turagam M, Liao SL, Adams DH, Reddy VY (2018) Arrhythmic mitral valve prolapse: JACC review topic of the week. J Am Coll Cardiol 72:2904–2924
doi: 10.1016/j.jacc.2018.09.048
pubmed: 30522653
Mantegazza V, Volpato V, Gripari P, Ghulam Ali S, Fusini L, Italiano G et al (2021) Multimodality imaging assessment of mitral annular disjunction in mitral valve prolapse. Heart 107:25–32
doi: 10.1136/heartjnl-2020-317330
pubmed: 32723759
Han Y, Peters DC, Kissinger KV, Goddu B, Yeon SB, Manning WJ et al (2010) Evaluation of papillary muscle function using cardiovascular magnetic resonance imaging in mitral valve prolapse. Am J Cardiol 106:243–248
doi: 10.1016/j.amjcard.2010.02.035
pubmed: 20599010
pmcid: 2929955
Scatteia A, Pascale CE, Gallo P, Pezzullo S, America R, Cappelletti AM et al (2020) Abnormal papillary muscle signal on cine MRI as a typical feature of mitral valve prolapse. Sci Rep 10:9166
doi: 10.1038/s41598-020-65983-1
pubmed: 32513938
pmcid: 7280529
Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30:303–371
doi: 10.1016/j.echo.2017.01.007
pubmed: 28314623
Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL et al (1999) Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med 341:1–7
doi: 10.1056/NEJM199907013410101
pubmed: 10387935
Dejgaard LA, Skjølsvik ET, Lie ØH, Ribe M, Stokke MK, Hegbom F et al (2018) The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol 72:1600–1609
doi: 10.1016/j.jacc.2018.07.070
pubmed: 30261961
Bharati S, Granston AS, Liebson PR, Loeb HS, Rosen KM, Lev M (1981) The conduction system in mitral valve prolapse syndrome with sudden death. Am Heart J 101:667–670
doi: 10.1016/0002-8703(81)90235-0
pubmed: 7223606
Hutchins GM, Moore GW, Skoog DK (1986) The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N Engl J Med 314:535–540
doi: 10.1056/NEJM198602273140902
pubmed: 3945291
Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132:556–566
doi: 10.1161/CIRCULATIONAHA.115.016291
pubmed: 26160859
Perazzolo Marra M, Basso C, De Lazzari M, Rizzo S, Cipriani A et al (2016) Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging 9:e005030
doi: 10.1161/CIRCIMAGING.116.005030
pubmed: 27516479
pmcid: 4991345
Bui AH, Roujol S, Foppa M, Kissinger KV, Goddu B, Hauser TH et al (2017) Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart 103:204–209
doi: 10.1136/heartjnl-2016-309303
pubmed: 27515954
Pradella S, Grazzini G, Brandani M, Calistri L, Nardi C, Mori F et al (2019) Magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol 29:1546–1554
doi: 10.1007/s00330-018-5634-5
pubmed: 30088066
Zugwitz D, Fung K, Aung N, Rauseo E, McCracken C, Cooper J et al (2022) Mitral annular disjunction assessed using CMR imaging: insights from the UK Biobank Population Study. JACC Cardiovasc Imaging S1936-878X(22):00479-X
Kim YH, Xie F, Yashima M, Wu TJ, Valderrabano M, Lee MH et al (1999) Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. Circulation 100:1450–1459
doi: 10.1161/01.CIR.100.13.1450
pubmed: 10500048
Pak HN, Oh YS, Liu YB, Wu TJ, Karagueuzian HS, Lin SF et al (2003) Catheter ablation of ventricular fibrillation in rabbit ventricles treated with beta-blockers. Circulation 108:3149–3156
doi: 10.1161/01.CIR.0000104563.12408.12
pubmed: 14656917
Van Herendael H, Zado ES, Haqqani H, Tschabrunn CM, Callans DJ, Frankel DS et al (2014) Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm 11:566–573
doi: 10.1016/j.hrthm.2013.12.030
pubmed: 24398086