Molecular principles of bidirectional signalling between membranes and small GTPases.

Arf ArfGEF DOCK-ELMO GTPases Rac1 integrated structural biology subcellular membranes

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
03 2023
Historique:
revised: 23 12 2022
received: 29 10 2022
accepted: 30 12 2022
medline: 29 3 2023
pubmed: 27 1 2023
entrez: 26 1 2023
Statut: ppublish

Résumé

Most small GTPases actuate their functions on subcellular membranes, which are increasingly seen as integral components of small GTPase signalling. In this review, we used the highly studied regulation of Arf GTPases by their GEFs to categorize the molecular principles of membrane contributions to small GTPase signalling, which have been highlighted by integrated structural biology combining in vitro reconstitutions in artificial membranes and high-resolution structures. As an illustration of how this framework can be harnessed to better understand the cooperation between small GTPases, their regulators and membranes, we applied it to the activation of the small GTPase Rac1 by DOCK-ELMO, identifying novel contributions of membranes to Rac1 activation. We propose that these structure-based principles should be considered when interrogating the mechanisms whereby small GTPase systems ensure spatial and temporal control of cellular signalling on membranes.

Identifiants

pubmed: 36700390
doi: 10.1002/1873-3468.14585
doi:

Substances chimiques

Monomeric GTP-Binding Proteins EC 3.6.5.2
Membranes, Artificial 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

778-793

Informations de copyright

© 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Cherfils J and Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93, 269-309.
D'Souza-Schorey C and Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7, 347-358.
Donaldson JG and Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12, 362-375.
Jackson CL and Bouvet S (2014) Arfs at a glance. J Cell Sci 127, 4103-4109.
Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL and Chabre M (1996) A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484.
Gillingham AK and Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23, 579-611.
Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476-1485.
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FS, Randazzo PA, Santy LC, Schurmann A et al. (2019) ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 30, 1249-1271.
Weiss O, Holden J, Rulka C and Kahn RA (1989) Nucleotide binding and cofactor activities of purified bovine brain and bacterially expressed ADP-ribosylation factor. J Biol Chem 264, 21066-21072.
Antonny B, Beraud-Dufour S, Chardin P and Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675-4684.
Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ et al. (2020) NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat Commun 11, 1067.
Liu Y, Kahn RA and Prestegard JH (2009) Structure and membrane interaction of myristoylated ARF1. Structure 17, 79-87.
Amor JC, Harrison DH, Kahn RA and Ringe D (1994) Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704-708.
Diestelkoetter-Bachert P, Beck R, Reckmann I, Hellwig A, Garcia-Saez A, Zelman-Hopf M, Hanke A, Nunes Alves A, Wade RC, Mayer MP et al. (2020) Structural characterization of an Arf dimer interface: molecular mechanism of Arf-dependent membrane scission. FEBS Lett 594, 2240-2253.
Hooy RM, Iwamoto Y, Tudorica DA, Ren X and Hurley JH (2022) Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat. Sci Adv 8, eadd3914.
Dodonova SO, Aderhold P, Kopp J, Ganeva I, Rohling S, Hagen WJH, Sinning I, Wieland F and Briggs JAG (2017) 9A structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. Elife 6, e26691.
van Meer G, Voelker DR and Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9, 112-124.
Mandal K (2020) Review of PIP2 in cellular signaling, functions and diseases. Int J Mol Sci 21, 8342.
Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A and Czech MP (1997) Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927-1930.
DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP and Lambright DG (2007) Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 28, 569-583.
Bigay J and Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23, 886-895.
Macia E, Paris S and Chabre M (2000) Binding of the PH and polybasic C-terminal domains of ARNO to phosphoinositides and to acidic lipids. Biochemistry 39, 5893-5901.
Aizel K, Biou V, Navaza J, Duarte LV, Campanacci V, Cherfils J and Zeghouf M (2013) Integrated conformational and lipid-sensing regulation of endosomal ArfGEF BRAG2. PLoS Biol 11, e1001652.
Jian X, Gruschus JM, Sztul E and Randazzo PA (2012) The pleckstrin homology (PH) domain of the Arf exchange factor Brag2 is an allosteric binding site. J Biol Chem 287, 24273-24283.
Karandur D, Nawrotek A, Kuriyan J and Cherfils J (2017) Multiple interactions between an Arf/GEF complex and charged lipids determine activation kinetics on the membrane. Proc Natl Acad Sci USA 114, 11416-11421.
Gimenez-Andres M, Copic A and Antonny B (2018) The many faces of amphipathic helices. Biomolecules 8, 45.
Muccini AJ, Gustafson MA and Fromme JC (2022) Structural basis for activation of Arf1 at the Golgi complex. Cell Rep 40, 111282.
Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X and Kahn RA (2005) The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 280, 1392-1400.
Folly-Klan M, Alix E, Stalder D, Ray P, Duarte LV, Delprato A, Zeghouf M, Antonny B, Campanacci V, Roy CR et al. (2013) A novel membrane sensor controls the localization and ArfGEF activity of bacterial RalF. PLoS Pathog 9, e1003747.
Pasqualato S, Renault L and Cherfils J (2002) Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep 3, 1035-1041.
Renault L, Guibert B and Cherfils J (2003) Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525-530.
Viaud J, Zeghouf M, Barelli H, Zeeh JC, Padilla A, Guibert B, Chardin P, Royer CA, Cherfils J and Chavanieu A (2007) Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes. Proc Natl Acad Sci USA 104, 10370-10375.
Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-248.
Nawrotek A, Benabdi S, Niyomchon S, Kryszke MH, Ginestier C, Caneque T, Tepshi L, Mariani A, St Onge RP, Giaever G et al. (2019) PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling. Nat Chem Biol 15, 358-366.
Thomas LL, van der Vegt SA and Fromme JC (2019) A steric gating mechanism dictates the substrate specificity of a Rab-GEF. Dev Cell 48, 100-114.e9.
Bagde SR and Fromme JC (2022) The TRAPP complexes: discriminating GTPases in context. FEBS Lett doi: 10.1002/1873-3468.14557
Cohen LA, Honda A, Varnai P, Brown FD, Balla T and Donaldson JG (2007) Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol Biol Cell 18, 2244-2253.
Malaby AW, van den Berg B and Lambright DG (2013) Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Proc Natl Acad Sci USA 110, 14213-14218.
Stalder D, Barelli H, Gautier R, Macia E, Jackson CL and Antonny B (2011) Kinetic studies of the Arf activator Arno on model membranes in the presence of Arf effectors suggest control by a positive feedback loop. J Biol Chem 286, 3873-3883.
Richardson BC, McDonold CM and Fromme JC (2012) The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev Cell 22, 799-810.
Padovani D, Folly-Klan M, Labarde A, Boulakirba S, Campanacci V, Franco M, Zeghouf M and Cherfils J (2014) EFA6 controls Arf1 and Arf6 activation through a negative feedback loop. Proc Natl Acad Sci USA 111, 12378-12383.
Monetta P, Slavin I, Romero N and Alvarez C (2007) Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol Biol Cell 18, 2400-2410.
Gustafson MA and Fromme JC (2017) Regulation of Arf activation occurs via distinct mechanisms at early and late Golgi compartments. Mol Biol Cell 28, 3660-3671.
Galindo A, Soler N, McLaughlin SH, Yu M, Williams RL and Munro S (2016) Structural insights into Arl1-mediated targeting of the Arf-GEF BIG1 to the trans-Golgi. Cell Rep 16, 839-850.
Hofmann I, Thompson A, Sanderson CM and Munro S (2007) The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 17, 711-716.
Li CC, Chiang TC, Wu TS, Pacheco-Rodriguez G, Moss J and Lee FJ (2007) ARL4D Recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 18, 4420-4437.
Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H et al. (2008) GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol 10, 85-92.
Viegas A, Yin DM, Borggrafe J, Viennet T, Falke M, Schmitz A, Famulok M and Etzkorn M (2020) Molecular architecture of a network of potential intracellular EGFR modulators: ARNO, CaM, phospholipids, and the Juxtamembrane segment. Structure 28, 54-62.e5.
Scholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G and Kornau HC (2010) AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 66, 768-780.
Elagabani MN, Brisevac D, Kintscher M, Pohle J, Kohr G, Schmitz D and Kornau HC (2016) Subunit-selective N-methyl-d-aspartate (NMDA) receptor signaling through Brefeldin A-resistant Arf guanine nucleotide exchange factors BRAG1 and BRAG2 during synapse maturation. J Biol Chem 291, 9105-9118.
Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA et al. (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8, 124-136.
Hosokawa H, Dip PV, Merkulova M, Bakulina A, Zhuang Z, Khatri A, Jian X, Keating SM, Bueler SA, Rubinstein JL et al. (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. J Biol Chem 288, 5896-5913.
Cherfils J (2014) Arf GTPases and their effectors: assembling multivalent membrane-binding platforms. Curr Opin Struct Biol 29, 67-76.
Bigay J, Gounon P, Robineau S and Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563-566.
Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M, Scita G, Parton RG and Mayor S (2018) Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 9, 1835.
Das S, Malaby AW, Nawrotek A, Zhang W, Zeghouf M, Maslen S, Skehel M, Chakravarthy S, Irving TC, Bilsel O et al. (2019) Structural organization and dynamics of homodimeric cytohesin family Arf GTPase exchange factors in solution and on membranes. Structure 27, 1782-1797.e7.
Picas L, Gaits-Iacovoni F and Goud B (2016) The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction. F1000Res 5, F1000 Faculty Rev-422.
Kitamata M, Inaba T and Suetsugu S (2020) The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochem Soc Trans 48, 837-851.
Maxwell KN, Zhou Y and Hancock JF (2018) Rac1 nanoscale organization on the plasma membrane is driven by lipid binding specificity encoded in the membrane anchor. Mol Cell Biol 38, e00186-18.
Remorino A, De Beco S, Cayrac F, Di Federico F, Cornilleau G, Gautreau A, Parrini MC, Masson JB, Dahan M and Coppey M (2017) Gradients of Rac1 nanoclusters support spatial patterns of Rac1 signaling. Cell Rep 21, 1922-1935.
Peurois F, Peyroche G and Cherfils J (2019) Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 47, 13-22.
Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Cote JF et al. (2020) Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun 11, 3464.
Kukimoto-Niino M, Katsura K, Kaushik R, Ehara H, Yokoyama T, Uchikubo-Kamo T, Nakagawa R, Mishima-Tsumagari C, Yonemochi M, Ikeda M et al. (2021) Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex. Sci Adv 7, eabg3147.
Boland A, Cote JF and Barford D (2022) Structural Biology of DOCK-Family Guanine Nucleotide Exchange Factors. FEBS Lett doi: 10.1002/1873-3468.14523
Gadea G and Blangy A (2014) Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 93, 466-477.
Laurin M and Cote JF (2014) Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev 28, 533-547.
Grizot S, Faure J, Fieschi F, Vignais PV, Dagher MC and Pebay-Peyroula E (2001) Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation. Biochemistry 40, 10007-10013.
Premkumar L, Bobkov AA, Patel M, Jaroszewski L, Bankston LA, Stec B, Vuori K, Cote JF and Liddington RC (2010) Structural basis of membrane targeting by the Dock180 family of rho family guanine exchange factors (rho-GEFs). J Biol Chem 285, 13211-13222.
Kulkarni K, Yang J, Zhang Z and Barford D (2011) Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem 286, 25341-25351.
Komander D, Patel M, Laurin M, Fradet N, Pelletier A, Barford D and Cote JF (2008) An alpha-helical extension of the ELMO1 pleckstrin homology domain mediates direct interaction to DOCK180 and is critical in Rac signaling. Mol Biol Cell 19, 4837-4851.
Weng Z, Situ C, Lin L, Wu Z, Zhu J and Zhang R (2019) Structure of BAI1/ELMO2 complex reveals an action mechanism of adhesion GPCRs via ELMO family scaffolds. Nat Commun 10, 51.
Robbe K, Otto-Bruc A, Chardin P and Antonny B (2003) Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J Biol Chem 278, 4756-4762.
Zhou Y, Prakash P, Liang H, Cho KJ, Gorfe AA and Hancock JF (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168, 239-251.e16.
Terasawa M, Uruno T, Mori S, Kukimoto-Niino M, Nishikimi A, Sanematsu F, Tanaka Y, Yokoyama S and Fukui Y (2012) Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration. PLoS One 7, e46277.
Birge RB, Kalodimos C, Inagaki F and Tanaka S (2009) Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 7, 13.
Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJ, Beck R, Beck M, Wieland F, Briggs JA. (2015) A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195-198.

Auteurs

Agata Nawrotek (A)

CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France.

Pavlina Dubois (P)

CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France.

Mahel Zeghouf (M)

CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France.

Jacqueline Cherfils (J)

CNRS, Ecole Normale Supérieure Paris-Saclay and Université Paris-Saclay, Gif-sur-Yvette, France.

Articles similaires

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH