Blockage of autophagosome-lysosome fusion through SNAP29 O-GlcNAcylation promotes apoptosis via ROS production.
Anticancer therapy
O-GlcNAcylation
SNAP29
apoptosis
autophagic flux
autophagy
kinetochore
reactive oxygen species
Journal
Autophagy
ISSN: 1554-8635
Titre abrégé: Autophagy
Pays: United States
ID NLM: 101265188
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
medline:
22
6
2023
pubmed:
28
1
2023
entrez:
27
1
2023
Statut:
ppublish
Résumé
Macroautophagy/autophagy has been shown to exert a dual role in cancer i.e., promoting cell survival or cell death depending on the cellular context and the cancer stage. Therefore, development of potent autophagy modulators, with a clear mechanistic understanding of their target action, has paramount importance in both mechanistic and clinical studies. In the process of exploring the mechanism of action of a previously identified cytotoxic small molecule (SM15) designed to target microtubules and the interaction domain of microtubules and the kinetochore component NDC80/HEC1, we discovered that the molecule acts as a potent autophagy inhibitor. By using several biochemical and cell biology assays we demonstrated that SM15 blocks basal autophagic flux by inhibiting the fusion of correctly formed autophagosomes with lysosomes. SM15-induced autophagic flux blockage promoted apoptosis-mediated cell death associated with ROS production. Interestingly, autophagic flux blockage, apoptosis induction and ROS production were rescued by genetic or pharmacological inhibition of OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) or by expressing an O-GlcNAcylation-defective mutant of the SNARE fusion complex component SNAP29, pointing to SNAP29 as the molecular target of SM15 in autophagy. Accordingly, SM15 was found to enhance SNAP29 O-GlcNAcylation and, thereby, inhibit the formation of the SNARE fusion complex. In conclusion, these findings identify a new pathway in autophagy connecting O-GlcNAcylated SNAP29 to autophagic flux blockage and autophagosome accumulation, that, in turn, drives ROS production and apoptotic cell death. Consequently, modulation of SNAP29 activity may represent a new opportunity for therapeutic intervention in cancer and other autophagy-associated diseases.
Identifiants
pubmed: 36704963
doi: 10.1080/15548627.2023.2170962
pmc: PMC10283446
doi:
Substances chimiques
Reactive Oxygen Species
0
SNARE Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2078-2093Références
Cell. 2019 Jan 10;176(1-2):11-42
pubmed: 30633901
EMBO J. 2016 Oct 17;35(20):2223-2237
pubmed: 27647876
Nat Rev Mol Cell Biol. 2018 Jun;19(6):349-364
pubmed: 29618831
Oncologist. 2014 Jun;19(6):637-8
pubmed: 24821822
Autophagy. 2021 Oct;17(10):2680-2688
pubmed: 32924745
Traffic. 2008 Apr;9(4):574-87
pubmed: 18182013
Mol Cell. 2015 Jan 8;57(1):39-54
pubmed: 25498145
Elife. 2017 Jun 08;6:
pubmed: 28594322
J Cell Sci. 2016 Aug 15;129(16):3059-66
pubmed: 27528206
J Biol Chem. 2010 Jul 30;285(31):24184-94
pubmed: 20484055
Autophagy. 2019 Mar;15(3):391-406
pubmed: 30145925
Curr Opin Cell Biol. 2018 Aug;53:29-36
pubmed: 29727743
Nat Chem Biol. 2021 Jun;17(6):653-664
pubmed: 34035513
Nat Genet. 2005 Jul;37(7):771-6
pubmed: 15980862
Genes Dev. 2007 Jul 1;21(13):1621-35
pubmed: 17606641
Cell Death Dis. 2013 Mar 07;4:e524
pubmed: 23470531
Genes Dev. 2007 Jun 1;21(11):1367-81
pubmed: 17510285
J Cell Sci. 2004 Jun 1;117(Pt 13):2687-97
pubmed: 15138286
Semin Cell Dev Biol. 2018 Aug;80:50-64
pubmed: 28587975
Mol Biol Cell. 2019 Aug 1;30(17):2283-2295
pubmed: 31188703
J Biol Chem. 2017 Aug 18;292(33):13599-13614
pubmed: 28673965
Mol Cell. 2019 Apr 18;74(2):330-346.e11
pubmed: 30853400
Biochim Biophys Acta Mol Basis Dis. 2021 Dec 1;1867(12):166262
pubmed: 34481059
Mol Cell. 2016 Sep 1;63(5):781-95
pubmed: 27588602
Cell Death Differ. 2020 Mar;27(3):858-871
pubmed: 31900427
Exp Cell Res. 1988 Jan;174(1):244-51
pubmed: 3335225
Autophagy. 2014;10(11):2077-8
pubmed: 25484091
J Med Chem. 2022 Feb 24;65(4):2989-3001
pubmed: 35130435
Nat Cell Biol. 2011 Apr;13(4):453-60
pubmed: 21394080
Autophagy. 2018;14(2):207-215
pubmed: 28933638
Cancer Chemother Pharmacol. 2017 Feb;79(2):287-294
pubmed: 27889812
J Cell Sci. 2004 Sep 15;117(Pt 20):4837-48
pubmed: 15340014
Nat Rev Cancer. 2017 Sep;17(9):528-542
pubmed: 28751651
Autophagy. 2007 Sep-Oct;3(5):452-60
pubmed: 17534139
Cancers (Basel). 2019 Sep 24;11(10):
pubmed: 31554253
Mol Cell Biol. 2018 May 15;38(11):
pubmed: 29507186
Nat Cell Biol. 2018 Mar;20(3):243-251
pubmed: 29476153
J Cell Biol. 2016 Dec 19;215(6):857-874
pubmed: 27864321
J Cell Sci. 2013 Mar 1;126(Pt 5):1071-80
pubmed: 23620510
Nat Cell Biol. 2014 Dec;16(12):1215-26
pubmed: 25419848
Genes Dev. 2011 Apr 1;25(7):717-29
pubmed: 21406549
Cell. 2012 Dec 7;151(6):1256-69
pubmed: 23217709
Autophagy. 2014;10(11):2087-96
pubmed: 25484088
Cell Chem Biol. 2019 Sep 19;26(9):1283-1294.e5
pubmed: 31327703
Mol Cell. 2020 Jan 16;77(2):228-240.e7
pubmed: 31733992
Cell. 2008 May 2;133(3):427-39
pubmed: 18455984
Neuro Oncol. 2021 Jul 1;23(7):1072-1086
pubmed: 33428749
Cell. 2009 Jun 12;137(6):1062-75
pubmed: 19524509
Nat Rev Drug Discov. 2007 Apr;6(4):304-12
pubmed: 17396135
Cancer Discov. 2019 Sep;9(9):1167-1181
pubmed: 31434711
Oncogene. 2018 Jan 11;37(2):231-240
pubmed: 28925395
Cell Death Dis. 2018 Feb 14;9(2):243
pubmed: 29445175
J Cell Biol. 2019 Mar 4;218(3):757-770
pubmed: 30578282
Traffic. 2006 Feb;7(2):129-45
pubmed: 16420522
Front Cell Dev Biol. 2020 Jan 22;7:397
pubmed: 32039209
Autophagy. 2018;14(8):1435-1455
pubmed: 29940786
Cell Stress. 2018 Mar 22;2(4):72-81
pubmed: 31225470
Cell Struct Funct. 2008;33(1):109-22
pubmed: 18388399
J Biol Chem. 2009 Mar 20;284(12):8023-32
pubmed: 19150980
Autophagy. 2018;14(2):283-295
pubmed: 29377763