Evolution of satDNAs on holocentric chromosomes: insights from hemipteran insects of the genus Mahanarva.


Journal

Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology
ISSN: 1573-6849
Titre abrégé: Chromosome Res
Pays: Netherlands
ID NLM: 9313452

Informations de publication

Date de publication:
27 01 2023
Historique:
received: 14 09 2022
accepted: 05 12 2022
revised: 09 11 2022
entrez: 27 1 2023
pubmed: 28 1 2023
medline: 1 2 2023
Statut: epublish

Résumé

Satellite DNAs (satDNAs) constitute one of the main components of eukaryote genomes and are involved in chromosomal organization and diversification. Although largely studied, little information was gathered about their evolution on holocentric species, i.e., diffuse centromeres, which, due to differences in repeat organization, could result in different evolutionary patterns. Here, we combined bioinformatics and cytogenetic approaches to evaluate the evolution of the satellitomes in Mahanarva holocentric insects. In two species, de novo identification revealed a high number of satDNAs, 110 and 113, with an extreme monomer length range of 18-4228 bp. The overall abundance of satDNAs was observed to be 6.67% in M. quadripunctata and 1.98% in M. spectabilis, with different abundances for the shared satDNAs. Chromosomal mapping of the most abundant repeats of M. quadripunctata and M. spectabilis on other Mahanarva reinforced the dynamic nature of satDNAs. Variable patterns of chromosomal distribution for the satDNAs were noticed, with the occurrence of clusters on distinct numbers of chromosomes and at different positions and the occurrence of scattered signals or nonclustered satDNAs. Altogether, our data demonstrated the high dynamism of satDNAs in Mahanarva with the involvement of this genomic fraction in chromosome diversification of the genus. The general characteristics and patterns of evolution of satDNAs are similar to those observed on monocentric chromosomes, suggesting that the differential organization of genome compartments observed on holocentric chromosomes compared with monocentric chromosomes does not have a large impact on the evolution of satDNAs. Analysis of the satellitomes of other holocentric species in a comparative manner will shed light on this issue.

Identifiants

pubmed: 36705735
doi: 10.1007/s10577-023-09710-2
pii: 10.1007/s10577-023-09710-2
doi:

Substances chimiques

DNA, Satellite 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Alves RT, Carvalho GS (2014) Primeiro registro das espécies de cigarrinhas-da-raiz da cana-de-açúcar Mahanarva spectabilis (Distant) e Mahanarva liturata (Le Peletier & Serville) atacando canaviais na região de Goianésia, Estado de Goiás, Brasil. Arquivos do Instituto Biológico 81:83–85. https://doi.org/10.1590/S1808-16572014000100016
doi: 10.1590/S1808-16572014000100016
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Anjos A, Rocha GC, Paladini A, Mariguela TC, Cabral-de-Mello DC (2016) Karyotypes and repetitive DNA evolution in six species of the genus Mahanarva (Auchenorrhyncha: Cercopidae). Cytogenet Genome Res 149:321–327. https://doi.org/10.1159/000450730
doi: 10.1159/000450730 pubmed: 27811473
Anjos A, Paladini A, Mariguela TC, Cabral-de-Mello DC (2018) U1 snDNA chromosomal mapping in ten spittlebug species (Cercopidade, Auchenorrhyncha, Hemiptera). Genome 61:59–62. https://doi.org/10.1139/gen-2017-0151
doi: 10.1139/gen-2017-0151 pubmed: 29185797
Anjos A, Paladini A, Evangelista O, Cabral-de-Mello DC (2019) Insights into chromosomal evolution of Cicadomorpha using fluorochrome staining and mapping 18S rRNA and H3 histone genes. J Zool Syst Evol Res 57:314–322. https://doi.org/10.1111/jzs.12254
doi: 10.1111/jzs.12254
Bardella VB, da Rosa JA, Vanzela ALL (2014) Origin and distribution of AT-rich repetitive DNA families in Triatoma infestans (Heteroptera). Infect Genet Evol 23:106–114. https://doi.org/10.1016/j.meegid.2014.01.035
doi: 10.1016/j.meegid.2014.01.035 pubmed: 24524986
Bardella VB, Milani D, Cabral-de-Mello DC (2020) Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes. Chromosom Res 28:369–380. https://doi.org/10.1007/s10577-020-09642-1
doi: 10.1007/s10577-020-09642-1
Benson G (1999) Tandem Repeats Finder: a program to analyse DNA sequences. Nucleic Acids Res 27:573–578. https://doi.org/10.1093/nar/27.2.573
doi: 10.1093/nar/27.2.573 pubmed: 9862982 pmcid: 148217
Birchler JA, Presting GG (2012) Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev 26:638–640. https://doi.org/10.1101/gad.191049.112
Bizzaro D, Manicardi GC, Bianchi U (1996) Chromosomal localization of a highly repeated EcoRI DNA fragment in Megoura viciae (Homoptera, Aphididae) by nick translation and fluorescence in situ hybridization. Chromosom Res 4:392–396. https://doi.org/10.1007/BF02257275
doi: 10.1007/BF02257275
Boštjančić LL, Bonassin L, Anušić L, Lovrenčić L, Besendorfer V, Maguire I, Grandjean F, Austin CM, Greve C, Hamadou AB, Mlinarec J (2021) The Pontastacus leptodactylus (Astacidae) repeatome provides insight into genome evolution and reveals remarkable diversity of satellite DNA. Front Genet 11:611745. https://doi.org/10.3389/fgene.2020.611745
doi: 10.3389/fgene.2020.611745 pubmed: 33552130 pmcid: 7859515
Brajković J, Feliciello I, Bruvo-Mađarić B, Ugarković D (2012) Satellite DNA-like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3 2:931–941. https://doi.org/10.1534/g3.112.003467
doi: 10.1534/g3.112.003467 pubmed: 22908042 pmcid: 3411249
Cabral-de-Mello DC, Marec F (2021) Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics 296:513–526. https://doi.org/10.1007/s00438-021-01765-2
doi: 10.1007/s00438-021-01765-2 pubmed: 33625598
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec F (2021) The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. Front Genet 12:661417. https://doi.org/10.3389/fgene.2021.661417
doi: 10.3389/fgene.2021.661417 pubmed: 33859676 pmcid: 8042265
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA, Ruiz-Ruano FJ (2022) Satellitome comparison of two Oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol 201:36. https://doi.org/10.1186/s12915-021-01216-9
doi: 10.1186/s12915-021-01216-9
Castagnone-Sereno P, Leroy H, Semblat JP, Leroy F, Abad P, Zijlstra C (1998) Unusual and strongly structured sequence variation in a complex satellite DNA family from the nematode Meloidogyne chitwoodi. J Mol Evol 46:225–233. https://doi.org/10.1007/PL00006297
doi: 10.1007/PL00006297 pubmed: 9452524
Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220. https://doi.org/10.1038/371215a0
doi: 10.1038/371215a0 pubmed: 8078581
Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D (2005) Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res 33:4519–4526. https://doi.org/10.1093/nar/gki764
doi: 10.1093/nar/gki764 pubmed: 16091629 pmcid: 1184221
Cohen S, Agmon N, Sobol O, Segal D (2010) Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA 1:11. https://doi.org/10.1186/1759-8753-1-11
doi: 10.1186/1759-8753-1-11 pubmed: 20226008 pmcid: 3225859
da Silva MJ, Destro RF, Gazoni T, Narimatsu H, Santos PSP, Haddad CFB, Parise-Maltempi PP (2020) Great abundance of satellite DNA in Proceratophrys (Anura, Odontophrynidae) revealed by genome sequencing. Cytogenet Genome Res 160:141–147. https://doi.org/10.1159/000506531
doi: 10.1159/000506531 pubmed: 32146462
Dalíková M, Zrzavá M, Kubíčková S, Marec F (2017) W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosom Res 25:241–252. https://doi.org/10.1007/s10577-017-9558-8
doi: 10.1007/s10577-017-9558-8
de Lima LG, Ruiz-Ruano FJ (2022) In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the Drosophila genus. Gen Biol Evol 14:evac064. https://doi.org/10.1093/gbe/evac064
doi: 10.1093/gbe/evac064
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N (2021) The centromere histone is conserved and associated with tandem repeats sharing a conserved 19-bp box in the holocentromere of Meloidogyne nematodes. Mol Biol Evol 38:1943–1965. https://doi.org/10.1093/molbev/msaa336
doi: 10.1093/molbev/msaa336 pubmed: 33399875 pmcid: 8097292
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1385/1-59259-192-2:365
doi: 10.1385/1-59259-192-2:365 pubmed: 15034147 pmcid: 390337
Fennah RG (1968) Revisionary notes on the new world genera of Cercopid froghoppers (Homoptera: Cercopoidea). Bull Entomol Res 58:165–190. https://doi.org/10.1017/S0007485300055954
doi: 10.1017/S0007485300055954
Fry K, Salser W (1977) Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084. https://doi.org/10.1016/0092-8674(77)90170-2
doi: 10.1016/0092-8674(77)90170-2 pubmed: 597857
Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8:1–44. https://doi.org/10.3390/genes8090230
doi: 10.3390/genes8090230
Gasparotto AE, Milani D, Martí E, Ferretti ABSM, Bardella VB, Hickmann F, Zrzavá M, Marec F, Cabral-de-Mello DC (2022) A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach. Chromosoma. https://doi.org/10.1007/s00412-022-00781-4
Gordon A, Hannon GF (2010) FASTX-Toolkit. FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit/webcite . Accessed 15 Jan 2018
Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170:1913–1927. https://doi.org/10.1534/genetics.104.038208
doi: 10.1534/genetics.104.038208 pubmed: 15937135 pmcid: 1449784
Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, Ma L, Novák P, Neumann P, Taudien S, Platzer M, Houben A (2013) The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J 73:555–565. https://doi.org/10.1111/tpj.12054
doi: 10.1111/tpj.12054 pubmed: 23078243
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T (2021) Comparative repeat profiling of two closely related conifers (Larix decidua and Larix kaempferi) reveals high genome similarity with only few fast-evolving satellite DNAs. Front Genet 12:683668. https://doi.org/10.3389/fgene.2021.683668
doi: 10.3389/fgene.2021.683668 pubmed: 34322154 pmcid: 8312256
Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P, Zhang M, Costa L, Castellani M, Scott A, Toegelová H, Fuchs J, Mata-Sucre Y, Dias Y, Vanzela ALL, Huettel B, Almeida CCS, Šimková H, Souza G et al (2022) Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185:3153–3168.e18. https://doi.org/10.1016/j.cell.2022.06.045
doi: 10.1016/j.cell.2022.06.045 pubmed: 35926507
Junier T, Pagni M (2000) Dotlet: diagonal plots in a web browser. Bioinformatics 16:178–179. https://doi.org/10.1093/bioinformatics/16.2.178
doi: 10.1093/bioinformatics/16.2.178 pubmed: 10842741
Kang Y, Wang J, Neff A, Kratzer S, Kimura H, Davis RE (2016) Differential chromosomal localization of centromeric histone CENP-A contributes to nematode programmed DNA elimination. Cell Rep 16:2308–2316. https://doi.org/10.1016/j.celrep.2016.07.079
doi: 10.1016/j.celrep.2016.07.079 pubmed: 27545882 pmcid: 5007152
Kuhn GCS, Küttler H, Moreira-Filho O, Heslop-Harrison JS (2012) The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol 29:7–11. https://doi.org/10.1093/molbev/msr173
doi: 10.1093/molbev/msr173 pubmed: 21712468
Kuznetsova V, Aguin-Pombo D (2015) Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review. Zookeys 538:63–93. https://doi.org/10.3897/zookeys.538.6724
doi: 10.3897/zookeys.538.6724
Kuznetsova VG, Maryanska-Nadachowska A, Nokkala S (2003) A new approach to the Auchenorrhyncha (Hemiptera, Insecta) cytogenetics: chromosomes of the meadow spittlebug Philaenus spumarius (L.) examined using various chromosome banding techniques. Folia Biol 51:33–40
López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28. https://doi.org/10.1159/000337118
doi: 10.1159/000337118 pubmed: 22759811
Lorite P, Carrillo JA, Aguilar JA, Palomeque T (2004) Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant Monomorium subopacum (Hymenoptera, Formicidae). Cytogenet. Genome Res 105:83–92. https://doi.org/10.1159/000078013
doi: 10.1159/000078013 pubmed: 15218262
Lower SS, McGurk MP, Clark AG, Barbash DA (2018) Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 49:70–78. https://doi.org/10.1016/j.gde.2018.03.003
doi: 10.1016/j.gde.2018.03.003 pubmed: 29579574 pmcid: 5975084
Lu Y-J, Kochert GD, Isenhour DJ, Adang MJ (1994) Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol Biol 3:123–130. https://doi.org/10.1111/j.1365-2583.1994.tb00159.x
doi: 10.1111/j.1365-2583.1994.tb00159.x pubmed: 7987522
Mandrioli M, Manicardi GC (2020) Holocentric chromosomes. PloS Genet 16:e1008918. https://doi.org/10.1371/journal.pgen.1008918
doi: 10.1371/journal.pgen.1008918 pubmed: 32730246 pmcid: 7392213
Mandrioli M, Manicardi GC, Marec F (2003) Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera). Chromosom Res 11:51–56. https://doi.org/10.1023/A:1022058032217
doi: 10.1023/A:1022058032217
Marin-Morales MA, Zefa E, Bertagna M, Camargo-Mathias MI, Arrigoni E (2002) Chromosome analysis of two species of sugar cane pests of the genus Mahanarva (Homoptera, Cercopidae). Caryologia 55:357–360. https://doi.org/10.1080/00087114.2002.10797887
doi: 10.1080/00087114.2002.10797887
Maryańska-Nadachowska A, Kuznetsova VG, Abdul-Nour H (2008) A chromosomal study on a Lebanese spittlebug Philaenus arslani (Hemiptera: Auchenorrhyncha: Aphrophoridae). Eur J Entomol 105:205–210. https://doi.org/10.14411/eje.2008.029
doi: 10.14411/eje.2008.029
Melters DP, Paliulis LV, Korf IF, Chan SW (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593. https://doi.org/10.1007/s10577-012-9292-1
doi: 10.1007/s10577-012-9292-1 pubmed: 22766638
Mestrović N, Plohl M, Mravinac B, Ugarković Đ (1998) Evolution of satellite DNAs from the genus Palorus-experimental evidence for the “library” hypothesis. Mol Biol Evol 15:1062–1068. https://doi.org/10.1093/oxfordjournals.molbev.a026005
doi: 10.1093/oxfordjournals.molbev.a026005 pubmed: 9718733
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M (2015) Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 23:583–596. https://doi.org/10.1007/s10577-015-9483-7
doi: 10.1007/s10577-015-9483-7 pubmed: 26293606
Milani D, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC (2021) Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity 127:475–483. https://doi.org/10.1038/s41437-021-00470-5
doi: 10.1038/s41437-021-00470-5 pubmed: 34482369 pmcid: 8551250
Montiel EE, Panzera F, Palomeque T, Lorite P, Pita S (2021) Satellitome analysis of Rhodnius prolixus, one of the main Chagas disease vector species. Int J Mol Sci 22:6052. https://doi.org/10.3390/ijms22116052
doi: 10.3390/ijms22116052 pubmed: 34205189 pmcid: 8199985
Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P (2022) Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. Front Ecol Evol 10:826808. https://doi.org/10.3389/fevo.2022.826808
doi: 10.3389/fevo.2022.826808
Mora P, Vela J, Ruiz-Ruano FJ, Ruiz-Mena A, Montiel EE, Palomeque T, Lorite P (2020) Satellitome analysis in the ladybird beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 11:783. https://doi.org/10.3390/genes11070783
doi: 10.3390/genes11070783 pubmed: 32668664 pmcid: 7397073
Naclerio G, Cangiano G, Coulson A, Levitt A, Ruvolo V, La Volpe A (1992) Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans. J Mol Biol 226:159–168. https://doi.org/10.1016/0022-2836(92)90131-3
doi: 10.1016/0022-2836(92)90131-3 pubmed: 1619649
Noda H, Tatewaki R (1990) Re-examination of chromosomes of three species of rice planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 25:538–540. https://doi.org/10.1303/aez.25.538
doi: 10.1303/aez.25.538
Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. https://doi.org/10.1186/1471-2105-11-378
doi: 10.1186/1471-2105-11-378 pubmed: 20633259 pmcid: 2912890
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793. https://doi.org/10.1093/bioinformatics/btt054
doi: 10.1093/bioinformatics/btt054 pubmed: 23376349
Novák P, Robledillo LA, Koblížková A, Vrbová I, Neumann P, Macas J (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 45:e111. https://doi.org/10.1093/nar/gkx257
doi: 10.1093/nar/gkx257 pubmed: 28402514 pmcid: 5499541
Oliveira L, Neumann P, Jang TS, Klemme S, Schubert V, Koblížková A, Houben A, Macas J (2020) Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Front Plant Sci 10:1799. https://doi.org/10.3389/fpls.2019.01799
doi: 10.3389/fpls.2019.01799 pubmed: 32038700 pmcid: 6992598
Palacios-Gimenez OM, Milani D, Song H, Martí DA, López-León MD, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC (2020) Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol Evol 12:88–102. https://doi.org/10.1093/gbe/evaa018
doi: 10.1093/gbe/evaa018 pubmed: 32211863 pmcid: 7093836
Paladini A, Carvalho GS (2007) Descrição de três novas espécies de Mahanarva (Hemiptera, Cercopidae, Ischnorhininae). Iheringia. Série Zool 97:57–66. https://doi.org/10.1590/S0073-47212007000100009
doi: 10.1590/S0073-47212007000100009
Paladini A, Takiya DM, Urban JM, Cryan JR (2018) New World spittlebugs (Hemiptera: Cercopidae: Ischnorhininae): dated molecular phylogeny, classification, and evolution of aposematic coloration. Mol Phylogenet Evol 120:321–334. https://doi.org/10.1016/j.ympev.2017.12.020
doi: 10.1016/j.ympev.2017.12.020 pubmed: 29274496
Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity 100:564–573. https://doi.org/10.1038/hdy.2008.24
doi: 10.1038/hdy.2008.24 pubmed: 18414505
Pereira JA, Milani D, Ferretti ABSM, Bardella VB, Cabral-de-Mello DC, Lopes DM (2021) The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis. Chromosoma 130:251–262. https://doi.org/10.1007/s00412-021-00764-x
doi: 10.1007/s00412-021-00764-x pubmed: 34837120
Perepelov E, Bugrov AG, Maryańska-Nadachowska A (2002) Constitutive heterochromatin in karyotypes of two Cicadidae species from Japan (Cicadoidea, Hemiptera). Folia Biol. 50:217–219
Pita S, Panzera F, Mora P, Vela J, Cuadrado Á, Sánchez A, Palomeque T, Lorite P (2017) Comparative repeatome analysis on Triatoma infestans Andean and non-Andean lineages, main vector of Chagas disease. PLoS One 12:e0181635. https://doi.org/10.1371/journal.pone.0181635
doi: 10.1371/journal.pone.0181635 pubmed: 28723933 pmcid: 5517068
Plohl M, Luchetti A, Meštrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82. https://doi.org/10.1016/j.gene.2007.11.013
doi: 10.1016/j.gene.2007.11.013 pubmed: 18182173
Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325. https://doi.org/10.1007/s00412-014-0462-0
doi: 10.1007/s00412-014-0462-0 pubmed: 24763964 pmcid: 4107277
Pons J, Petitpierre E, Juan C (1993) Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes. Hereditas 119:179–185. https://doi.org/10.1111/j.1601-5223.1993.00179.x
doi: 10.1111/j.1601-5223.1993.00179.x pubmed: 8106263
Resende TT, Auad AM, Fonseca MG, Sobrinho FS, dos Santos DR, da Silva SE (2013) The damage capacity of Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae) adults on Brachiaria ruziziensis pasture. Scientific World Journal 281295. https://doi.org/10.1155/2013/281295
Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A (2017) Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126:325–335. https://doi.org/10.1007/s00412-016-0616-3
doi: 10.1007/s00412-016-0616-3 pubmed: 27645892
Ribeiro T, Vasconcelos E, dos Santos KGB, Vaio M, Brasileiro-Vidal AC, Pedrosa-Harand A (2020) Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res 28:139–153. https://doi.org/10.1007/s10577-019-09618-w
doi: 10.1007/s10577-019-09618-w pubmed: 31734754
Richard G-F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727. https://doi.org/10.1128/MMBR.00011-08
doi: 10.1128/MMBR.00011-08 pubmed: 19052325 pmcid: 2593564
Roizès G (2006) Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning. Nucleic Acids Res 34:1912–1924. https://doi.org/10.1093/nar/gkl137
doi: 10.1093/nar/gkl137 pubmed: 16598075 pmcid: 1447651
Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers: in bioinformatics methods and protocols. Humana Press, New Jersey, pp 365–386. https://doi.org/10.1385/1-59259-192-2:365
doi: 10.1385/1-59259-192-2:365
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep 6:28333. https://doi.org/10.1038/srep28333
doi: 10.1038/srep28333 pubmed: 27385065 pmcid: 4935994
Sader M, Vaio M, Cauz-Santos LA, Dornelas MC, Vieira MLC, Melo N, Pedrosa-Harand A (2021) Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome. Planta 253:86. https://doi.org/10.1007/s00425-021-03598-0
doi: 10.1007/s00425-021-03598-0 pubmed: 33792791
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harb Lab Press Cold Spring Harb, NY, p 999
Šatović E, Plohl M (2013) Tandem repeat-containing MITEs in the clam Donax trunculus. Genome Biol Evol 5:2549–2559. https://doi.org/10.1093/gbe/evt202
doi: 10.1093/gbe/evt202 pubmed: 24317975 pmcid: 3879986
Senaratne AP, Cortes-Silva N, Drinnenberg IA (2022) Evolution of holocentric chromosomes: drivers, diversity, and deterrents. Develop Biol 127:90–99. https://doi.org/10.1016/j.semcdb.2022.01.003
doi: 10.1016/j.semcdb.2022.01.003
Smit AFA, Hubley R, Green P (2017) RepeatMasker Open-4.0. http://www.repeatmasker.org
Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535. https://doi.org/10.1126/science.1251186
doi: 10.1126/science.1251186 pubmed: 1251186
Sousa A, Barrose Silva AE, Cuadrado A, Loarce Y, Alves MV, Guerra M (2011) Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 42:625–631. https://doi.org/10.1016/j.micron.2011.03.002
doi: 10.1016/j.micron.2011.03.002 pubmed: 21511483
Sproul JS, Khost DE, Eickbush DG, Negm S, Wei X, Wong I, Larracuente AM (2020) Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulans clade. Mol Biol Evol 37:2241–2256. https://doi.org/10.1093/molbev/msaa078
doi: 10.1093/molbev/msaa078 pubmed: 32191304 pmcid: 7403614
Steiner FA, Henikoff S (2014) Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 3:e02025. https://doi.org/10.7554/eLife.02025
doi: 10.7554/eLife.02025 pubmed: 24714495 pmcid: 3975580
Stephan W (1989) Tandem-repetitive non coding DNA: forms and forces. Mol Biol Evol 6:198–212. https://doi.org/10.1093/oxfordjournals.molbev.a040542
doi: 10.1093/oxfordjournals.molbev.a040542 pubmed: 2716519
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121
doi: 10.1093/molbev/msr121 pubmed: 21546353 pmcid: 3203626
Utsunomia R, Silva DMZA, Ruiz-Ruano FJ, Góes CAG, Melo S, Peres-Ramos L, Oliveira C, Porto-Foresti F, Foresti F, Hashimoto DT (2019) Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci Rep 9:5856. https://doi.org/10.1038/s41598-019-42383-8
doi: 10.1038/s41598-019-42383-8 pubmed: 30971780 pmcid: 6458115
Věchtová P, Dalíková M, Sýkorová M, Žurovcová M, Füssy Z, Zrzavá M (2016) CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella. Genetica 144:385–395. https://doi.org/10.1007/s10709-016-9907-0
doi: 10.1007/s10709-016-9907-0 pubmed: 27236660
Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115:553–567. https://doi.org/10.1093/genetics/115.3.553
doi: 10.1093/genetics/115.3.553 pubmed: 3569882 pmcid: 1216357

Auteurs

Allison Anjos (A)

Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.

Diogo Milani (D)

Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.

Vanessa B Bardella (VB)

Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil.

Andressa Paladini (A)

Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.

Diogo C Cabral-de-Mello (DC)

Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, SP, 13506-900, Brazil. cabral.mello@unesp.br.
Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071, Jaen, Spain. cabral.mello@unesp.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH