Exo-polygalacturonase production enhancement by Piriformospora indica from sugar beet pulp under submerged fermentation using the response surface methodology.
By-product
Eco-friendly
Environmental pollution
Optimization
Pectin
Pectinase
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
21
01
2022
accepted:
18
01
2023
medline:
14
4
2023
pubmed:
29
1
2023
entrez:
28
1
2023
Statut:
ppublish
Résumé
This study proposed a novel and cost-effective approach to enhance and optimize the exo-polygalacturonase from P. indica, a root endophytic fungus. In the current investigation, the impact of ammonium sulfate, sugar beet pulp (SBP), and glucose as variables on induction of exo-polygalacturonase from P. indica was optimized using the central composite design (CCD) of response surface methodology (RSM) under submerged fermentation (SmF). Additionally, determination of the exo-polygalacturonase molecular weight and in situ analysis was performed. The optimal reaction conditions, which resulted in the highest enzyme activity, were observed in the following conditions: ammonium sulfate (4 g/L), SBP (20 g/L), and glucose (60 g/L). Under the optimized condition, the maximum enzyme activity reached 19.4 U/ml (127 U/mg), which increased by 5.84 times compared to non-optimized conditions. The exo-polygalacturonase molecular weight was estimated at 60 KDa. In line with the bioinformatic analysis, the exo-polygalacturonase sequence of P. indica showed similarity with Rhizoctonia solani's and Thanateporus cucumeris. These results indicated that SBP acts as a cheap and suitable inducer of exo-polygalacturonase production by P. indica in submerged cultivation. The outcome of this study will be useful for industries to decrease environmental pollution with cost-effective approaches.
Identifiants
pubmed: 36708475
doi: 10.1007/s11356-023-25488-6
pii: 10.1007/s11356-023-25488-6
doi:
Substances chimiques
Polygalacturonase
EC 3.2.1.15
Ammonium Sulfate
SU46BAM238
Sugars
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
45815-45826Subventions
Organisme : University of Maragheh
ID : 3567
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aguilar G, Huitrón C (1990) Constitutive exo-pectinase produced by Aspergillus sp. CH-Y-1043 on different carbon source. Biotechnol Lett 12:655–660. https://doi.org/10.1007/BF01088189
doi: 10.1007/BF01088189
Ahmed I, Zia MA, Hussain MA, Akram Z, Naveed MT, Nowrouzi A (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J Rad Res Appl Sci 9:148–154. https://doi.org/10.1016/j.jrras.2015.11.003
doi: 10.1016/j.jrras.2015.11.003
Amin F, Arooj T, Nazli Z-i-H, Bhatti HN, Bilal M (2021) Exo-polygalacturonase production from agro-waste by Penicillium fellutanum and insight into thermodynamic, kinetic, and fruit juice clarification. Biomass Convers Biorefin 1–11. https://doi.org/10.1007/s13399-021-01902-2
Bai Z, Zhang H, Qi H, Peng X, Li B (2004) Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour Technol 95:49–52. https://doi.org/10.1016/j.biortech.2003.06.006
doi: 10.1016/j.biortech.2003.06.006
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
doi: 10.1016/0003-2697(76)90527-3
Chen Y, Sun D, Zhou Y, Liu L, Han W, Zheng B, Wang Z, Zhang Z (2014) Cloning, expression and characterization of a novel thermophilic polygalacturonase from Caldicellulosiruptor bescii DSM 6725. Int J Mol Sci 15:5717–5729. https://doi.org/10.3390/ijms15045717
doi: 10.3390/ijms15045717
Fawole O, Odunfa S (2003) Some factors affecting production of pectic enzymes by Aspergillus niger. Int Biodeterior Biodegrad 52:223–227. https://doi.org/10.1016/S0964-8305(03)00094-5
doi: 10.1016/S0964-8305(03)00094-5
Fontana RC, Salvador S, Silveira MMd (2005) Influence of pectin and glucose on growth and polygalacturonase production by Aspergillus niger in solid-state cultivation. J Ind Microbiol Biotechnol 32:371–377. https://doi.org/10.1007/s10295-005-0004-0
doi: 10.1007/s10295-005-0004-0
Gupta N, Mahur BK, Izrayeel AMD, Ahuja A, Rastogi VK (2022) Biomass conversion of agricultural waste residues for different applications: a comprehensive review. Environ Sci and Pollut Res 29:73622–73647. https://doi.org/10.1007/s11356-022-22802-6
doi: 10.1007/s11356-022-22802-6
Heerd D, Diercks-Horn S, Fernández-Lahore M (2014) Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions. Springerplus 3:1–14. https://doi.org/10.1186/2193-1801-3-742
doi: 10.1186/2193-1801-3-742
Heidarizadeh M, Rezaei PF, Shahabivand S (2018) Novel pectinase from Piriformospora indica, optimization of growth parameters and enzyme production in submerged culture condition. Turkish J Biochem 43:289–295. https://doi.org/10.1515/tjb-2017-0192
doi: 10.1515/tjb-2017-0192
Hutnan M, Drtil M, Mrafkova L (2000) Anaerobic biodegradation of sugar beet pulp. Biodegradation 11:203–211. https://doi.org/10.1023/A:1011139621329
doi: 10.1023/A:1011139621329
Jacob N (2009) Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues. In: Singh nee P, Pandey A (ed) Pectinolytic enzymes. Springer, Dordrecht, pp 383–396. https://doi.org/10.1007/978-1-4020-9942-7_21
John J, Kaimal KS, Smith ML, Rahman PK, Chellam PV (2020) Advances in upstream and downstream strategies of pectinase bioprocessing: a review. Int J Biol Macromol 162:1086–1099. https://doi.org/10.1016/j.ijbiomac.2020.06.224
doi: 10.1016/j.ijbiomac.2020.06.224
Kumar S, Sharma H, Sarkar B (2011) Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci Biotechnol 20:1289–1298. https://doi.org/10.1007/s10068-011-0178-3
doi: 10.1007/s10068-011-0178-3
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547. https://doi.org/10.1093/molbev/msy096
doi: 10.1093/molbev/msy096
Kumar V, Sahai V, Bisaria V (2012) Production of amylase and chlamydospores by Piriformospora indica, a root endophytic fungus. Biocatal Agricu Biotechnol 1:124–128. https://doi.org/10.1016/j.bcab.2012.02.002
doi: 10.1016/j.bcab.2012.02.002
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
doi: 10.1038/227680a0
Merril CR, Goldman D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438. https://doi.org/10.1126/science.6162199
doi: 10.1126/science.6162199
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030
doi: 10.1021/ac60147a030
Nair S, Panda T (1997) Statistical optimization of medium components for improved synthesis of pectinase by Aspergillus niger. Bioproc Biosyst Eng 16:169–173. https://doi.org/10.1007/s004490050305
doi: 10.1007/s004490050305
Olsson L, Christensen TM, Hansen KP, Palmqvist EA (2003) Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol 33:612–619. https://doi.org/10.1016/S0141-0229(03)00181-9
doi: 10.1016/S0141-0229(03)00181-9
Oyede M A (1998) Studies on cell wall degrading enzymes associated with degradation of cassava (Manihot esculenta) tubers by some phytopathogenic fungi. Dissertation. Obafemi Awolowo University
Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2018) Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 8:1–24. https://doi.org/10.1007/s13205-018-1220-4
Patil SR, Dayanand A (2006) Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour Technol 97:2054–2058. https://doi.org/10.1016/j.biortech.2005.09.015
doi: 10.1016/j.biortech.2005.09.015
Ramos AM, Gally M, García MC, Levin L (2010) Pectinolytic enzyme production by Colletotrichum truncatum, causal agent of soybean anthracnose. Rev Iberoma Micol 27:186–190. https://doi.org/10.1016/j.riam.2010.06.002
doi: 10.1016/j.riam.2010.06.002
Satapathy S, Rout JR, Kerry RG, Thatoi H, Sahoo SL (2020) Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Fron Nutr 7:117. https://doi.org/10.3389/fnut.2020.00117
doi: 10.3389/fnut.2020.00117
Tepe O, Dursun AY (2014) Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environ Sci Pollut Res Int 21:9911–9920. https://doi.org/10.1007/s11356-014-2833-8
doi: 10.1007/s11356-014-2833-8
Thakur A, Pahwa R, Singh S, Gupta R (2010) Production, purification, and characterization of polygalacturonase from Mucor circinelloides ITCC 6025. Enzyme Res 2010:1–7. https://doi.org/10.4061/2010/170549
doi: 10.4061/2010/170549
Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903. https://doi.org/10.1080/00275514.1998.12026983
doi: 10.1080/00275514.1998.12026983
Viayaraghavan P, Jeba Kumar S, Valan Arasu M, Al-Dhabi NA (2019) Simultaneous production of commercial enzymes using agro industrial residues by statistical approach. J Sci Food Agric 99:2685–2696. https://doi.org/10.1002/jsfa.9436
doi: 10.1002/jsfa.9436