Correlative Cellular Mass Spectrometry Imaging and Amperometry Show Dose Dependent Changes in Lipid Composition and Exocytosis.
Amperometry
Lipidomics
Proteasomal Inhibition
Single-Cell
ToF-SIMS
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
03 04 2023
03 04 2023
Historique:
received:
06
12
2022
medline:
28
3
2023
pubmed:
8
2
2023
entrez:
7
2
2023
Statut:
ppublish
Résumé
Aberrant functioning of the proteasome has been associated with crucial pathologic conditions including neurodegeneration. Yet, the complex underlying causes at the cellular level remain unclear and there are conflicting reports of neuroprotective to neurodegenerative effects of proteasomal inhibitors such as lactacystin that are utilised as models for neurodegenerative diseases. The conflicting results may be associated with different dose regimes of lactacystin and hence we have performed a dose dependent study of the effects of lactacystin to identify concurrent changes in the cell membrane lipid profile and the dynamics of exocytosis using a combination of surface sensitive mass spectrometry and single cell amperometry. Significant changes of negatively charged lipids were associated with different lactacystin doses that showed a weak correlation with exocytosis while changes in PE and PE-O lipids showed dose dependent changes correlated with initial pore formation and total release of vesicle content respectively.
Identifiants
pubmed: 36749546
doi: 10.1002/anie.202217993
doi:
Substances chimiques
lactacystin
133343-34-7
Proteasome Inhibitors
0
Membrane Lipids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202217993Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
H. C. Tai, E. M. Schuman, Nat. Rev. Neurosci. 2008, 9, 826-838;
D. N. Mitroi, A. U. Deutschmann, M. Raucamp, I. Karunakaran, K. Glebov, M. Hans, J. Walter, J. Saba, M. Graler, D. Ehninger, E. Sopova, O. Shupliakov, D. Swandulla, G. van Echten-Deckert, Sci. Rep. 2016, 6, 37064.
M. Ding, K. Shen, BioEssays 2008, 30, 1075-1083.
X. Hu, H. Zhang, Y. Zhang, Y. Zhang, L. Bai, Q. Chen, J. Wu, L. Zhang, Neurosci. Lett. 2014, 575, 25-30;
I. B. Wilde, M. Brack, J. M. Winget, T. Mayor, J. Proteome Res. 2011, 10, 1062-1072;
K. S. McNaught, D. P. Perl, A. L. Brownell, C. W. Olanow, Ann. Neurol. 2004, 56, 149-162.
V. K. Narayana, D. Kvaskoff, F. A. Meunier, in Lipidomics of Stem Cells, Springer, Berlin, 2017, pp. 191-205.
A. Ciechanover, P. Brundin, Neuron 2003, 40, 427-446;
M. Sharma, J. Burre, T. C. Sudhof, Sci. Transl. Med. 2012, 4, 147ra113;
G. Fenteany, S. L. Schreiber, J. Biol. Chem. 1998, 273, 8545-8548;
S. Bieler, S. Meiners, V. Stangl, T. Pohl, K. Stangl, Proteomics 2009, 9, 3257-3267;
K. T. Bush, A. L. Goldberg, S. K. Nigam, J. Biol. Chem. 1997, 272, 9086-9092;
Y. Zhao, A. N. Hegde, K. C. Martin, Curr. Biol. 2003, 13, 887-898;
H. J. Rideout, K. E. Larsen, D. Sulzer, L. Stefanis, J. Neurochem. 2001, 78, 899-908.
D. B. Bylund, D. C. Eikenberg, J. P. Hieble, S. Z. Langer, R. J. Lefkowitz, K. P. Minneman, P. B. Molinoff, R. R. Ruffolo, U. Trendelenburg, Pharmacol. Rev. 1994, 46, 121-136;
V. Cortez, M. Santana, A. P. Marques, A. Mota, J. Rosmaninho-Salgado, C. Cavadas, Neurochem. Int. 2012, 60, 387-393.
S. Sämfors, J. S. Fletcher, Annu. Rev. Anal. Chem. 2020, 13, 249-271;
J. S. Fletcher, S. Sämfors, J. Vallin, A. Svanström, J. Grantham, Anal. Bioanal. Chem. 2021, 413, 445-453;
H. Tian, S. Sheraz née Rabbani, J. C. Vickerman, N. Winograd, Anal. Chem. 2021, 93, 7808-7814.
X. Li, J. Dunevall, A. G. Ewing, Angew. Chem. Int. Ed. 2016, 55, 9041-9044;
Angew. Chem. 2016, 128, 9187-9190;
L. Ren, M. D. Pour, S. Majdi, X. Li, P. Malmberg, A. G. Ewing, Angew. Chem. Int. Ed. 2017, 56, 4970-4975;
Angew. Chem. 2017, 129, 5052-5057.
J. Suh, Y. A. Lee, B. J. Gwag, J. Neurochem. 2005, 95, 684-694.
A. J. B. Kreutzberger, V. Kiessling, B. Liang, S. T. Yang, J. D. Castle, L. K. Tamm, Biophys. J. 2017, 113, 1912-1915.
S. N. Witt, Commun. Integr. Biol. 2014, 7, e993266.
J. M. Dean, I. J. Lodhi, Protein Cell 2018, 9, 196-206.
P. C. Ikwegbue, P. Masamba, B. E. Oyinloye, A. P. Kappo, Pharmaceuticals 2018, 11, 2.
S. Lobasso, P. Tanzarella, D. Vergara, M. Maffia, T. Cocco, A. Corcelli, J. Cell. Physiol. 2017, 232, 3540-3551.
T. Fujimoto, Y. Ohsaki, Autophagy 2006, 2, 299-301.
X. Lou, J. Kim, B. J. Hawk, Y. K. Shin, Biochem. J. 2017, 474, 2039-2049.
Y. Uchiyama, M. M. Maxson, T. Sawada, A. Nakano, A. G. Ewing, Brain Res. 2007, 1151, 46-54.
G. V. Rinetti, F. E. Schweizer, J. Neurosci. 2010, 30, 3157-3166.
A. G. Lee, Biochim. Biophys. Acta Biomembranes 2004, 1666, 62-87.
G. R. Hammond, M. J. Fischer, K. E. Anderson, J. Holdich, A. Koteci, T. Balla, R. F. Irvine, Science 2012, 337, 727-730.
F. Dorninger, E. R. Werner, J. Berger, K. Watschinger, Front. Cell Dev. Biol. 2022, 10, 946393.