Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes.


Journal

Journal of medicinal chemistry
ISSN: 1520-4804
Titre abrégé: J Med Chem
Pays: United States
ID NLM: 9716531

Informations de publication

Date de publication:
23 02 2023
Historique:
pubmed: 11 2 2023
medline: 25 2 2023
entrez: 10 2 2023
Statut: ppublish

Résumé

Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.

Identifiants

pubmed: 36762908
doi: 10.1021/acs.jmedchem.2c01837
pmc: PMC9969412
doi:

Substances chimiques

Lipid Bilayers 0
Lipids 0
Peptides, Cyclic 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2773-2788

Subventions

Organisme : Austrian Science Fund FWF
ID : J 4568
Pays : Austria

Références

Pharm Res. 1996 Nov;13(11):1657-62
pubmed: 8956330
Angew Chem Int Ed Engl. 2021 Apr 6;60(15):8385-8390
pubmed: 33185961
Nat Rev Drug Discov. 2002 Sep;1(9):727-30
pubmed: 12209152
Adv Drug Deliv Rev. 2016 Jun 1;101:62-74
pubmed: 26877103
J Med Chem. 2022 Aug 11;65(15):10300-10317
pubmed: 35861996
J Chem Phys. 2020 Dec 21;153(23):234106
pubmed: 33353335
Phys Chem Chem Phys. 2022 Jan 19;24(3):1225-1236
pubmed: 34935813
J Chem Inf Model. 2022 Oct 10;62(19):4605-4619
pubmed: 36178379
ACS Med Chem Lett. 2016 Jun 06;7(8):757-61
pubmed: 27563399
ChemMedChem. 2016 May 19;11(10):1048-59
pubmed: 27154275
J Med Chem. 2015 Sep 24;58(18):7409-18
pubmed: 26308180
Bioorg Med Chem. 2018 Jun 1;26(10):2766-2773
pubmed: 28886995
Angew Chem Int Ed Engl. 2008;47(14):2595-9
pubmed: 18297660
Nat Chem Biol. 2011 Sep 25;7(11):810-7
pubmed: 21946276
J Med Chem. 2002 Jun 6;45(12):2615-23
pubmed: 12036371
Biophys J. 2018 Aug 7;115(3):436-444
pubmed: 30055754
J Am Chem Soc. 2015 Jan 21;137(2):715-21
pubmed: 25517352
J Chem Inf Model. 2022 Sep 26;62(18):4549-4560
pubmed: 36053061
Chem Sci. 2021 Jan 13;12(10):3526-3543
pubmed: 34163626
J Med Chem. 2021 May 13;64(9):5365-5383
pubmed: 33750117
Chem Sci. 2015 Jan 1;6(1):30-49
pubmed: 28553456
Nat Rev Drug Discov. 2010 Aug;9(8):597-614
pubmed: 20671764
Drug Discov Today. 2016 May;21(5):712-7
pubmed: 26891978
Curr Opin Chem Biol. 2017 Jun;38:141-147
pubmed: 28570865
Biochem J. 2017 Mar 15;474(7):1109-1125
pubmed: 28298556
RSC Adv. 2022 Feb 16;12(10):5782-5796
pubmed: 35424539
Chimia (Aarau). 2021 Jun 30;75(6):518-521
pubmed: 34233816
J Chem Inf Model. 2021 Jun 28;61(6):3015-3026
pubmed: 34000187
J Chem Theory Comput. 2012 Oct 9;8(10):3705-23
pubmed: 26593015
Biopolymers. 2016 Nov;106(6):901-909
pubmed: 27178381
J Med Chem. 2014 Jan 23;57(2):278-95
pubmed: 24044773
Chem Biol. 2014 Sep 18;21(9):1115-42
pubmed: 25237858
Exp Cell Res. 1998 May 25;241(1):126-33
pubmed: 9633520
Medchemcomm. 2012 Oct;3(10):1282-1289
pubmed: 23133740
J Med Chem. 2012 Apr 12;55(7):3163-9
pubmed: 22394492
Chemistry. 2020 Apr 21;26(23):5231-5244
pubmed: 32027758
Nat Chem Biol. 2014 Sep;10(9):723-31
pubmed: 25038790
Eur J Med Chem. 2015 Apr 13;94:459-70
pubmed: 25591543
Bioorg Med Chem. 2015 Jan 15;23(2):322-7
pubmed: 25533323
J Med Chem. 2021 Mar 11;64(5):2622-2633
pubmed: 33629858
J Chem Inf Model. 2021 Apr 26;61(4):1921-1930
pubmed: 33835817
J Chem Inf Model. 2021 Jul 26;61(7):3681-3695
pubmed: 34236179
Future Med Chem. 2012 Jul;4(11):1409-38
pubmed: 22857532
Chem Sci. 2020 May 11;11(21):5577-5591
pubmed: 32874502
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21896-21905
pubmed: 32843347
J Med Chem. 2016 Mar 24;59(6):2312-27
pubmed: 26457449
J Phys Chem B. 2018 Mar 1;122(8):2261-2276
pubmed: 29400464
Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26
pubmed: 11259830
Chem Sci. 2021 Mar 25;12(17):5977-5993
pubmed: 33995995
J Am Chem Soc. 2022 Oct 12;144(40):18532-18544
pubmed: 36178375
Drug Discov Ther. 2007 Aug;1(1):23-9
pubmed: 22504361
J Med Chem. 2011 Apr 14;54(7):1961-2004
pubmed: 21381769
Helv Chim Acta. 1976;59(4):1075-92
pubmed: 950308
Chem Rev. 2019 Sep 11;119(17):10241-10287
pubmed: 31083977
Drug Discov Today. 2005 Dec;10(23-24):1607-10
pubmed: 16376820
J Med Chem. 2015 Jun 11;58(11):4581-9
pubmed: 25950816
J Chem Inf Model. 2019 Jan 28;59(1):294-308
pubmed: 30457855
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21571-21577
pubmed: 32789999
Future Med Chem. 2019 Apr;11(7):637-639
pubmed: 30920310
Chem Sci. 2017 Nov 1;8(11):7576-7581
pubmed: 29568420
Biophys J. 2015 Oct 20;109(8):1528-32
pubmed: 26488642
ChemMedChem. 2016 May 19;11(10):1060-8
pubmed: 27094987
J Chem Inf Model. 2015 Mar 23;55(3):600-13
pubmed: 25668361
J Chem Inf Model. 2019 Jun 24;59(6):2952-2963
pubmed: 31042375
J Chem Inf Model. 2021 Jan 25;61(1):263-269
pubmed: 33350828
J Am Chem Soc. 2006 Mar 1;128(8):2510-1
pubmed: 16492015
J Med Chem. 2017 Mar 9;60(5):1662-1664
pubmed: 28234469
Biochim Biophys Acta. 1992 Jun 30;1107(2):261-70
pubmed: 1504071
Genome Biol. 2018 Nov 28;19(1):208
pubmed: 30486838
Chem Sci. 2022 Feb 24;13(11):3256-3262
pubmed: 35414877
Chimia (Aarau). 2017 Oct 25;71(10):678-702
pubmed: 29070413
J Membr Biol. 1994 Jun;140(2):111-22
pubmed: 7932645
J Med Chem. 2021 Jun 24;64(12):8272-8286
pubmed: 34096287
J Med Chem. 2021 Sep 9;64(17):12761-12773
pubmed: 34406766
J Chem Theory Comput. 2019 Oct 8;15(10):5175-5193
pubmed: 31433640
Curr Opin Chem Biol. 2015 Jun;26:34-41
pubmed: 25703142
J Chem Inf Model. 2016 Aug 22;56(8):1547-62
pubmed: 27387150
ACS Med Chem Lett. 2021 Jan 05;12(1):13-23
pubmed: 33488959
J Pept Res. 1998 Jan;51(1):19-28
pubmed: 9495587
J Med Chem. 2017 Mar 9;60(5):1665-1672
pubmed: 28059508
J Am Chem Soc. 2006 Nov 1;128(43):14073-80
pubmed: 17061890
Eur J Pharm Sci. 2004 Mar;21(4):429-41
pubmed: 14998573
Chem Sci. 2021 Mar 4;12(12):4309-4328
pubmed: 34163695
Chem Sci. 2022 Feb 28;13(13):3826-3836
pubmed: 35432913
Curr Opin Chem Biol. 2017 Jun;38:24-29
pubmed: 28249193
Curr Med Chem. 2002 May;9(9):963-78
pubmed: 11966456
Nat Rev Drug Discov. 2008 Jul;7(7):608-24
pubmed: 18591981
Chemphyschem. 2017 Dec 6;18(23):3309-3314
pubmed: 28921848

Auteurs

Stephanie M Linker (SM)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Christian Schellhaas (C)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Anna S Kamenik (AS)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Mac M Veldhuizen (MM)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Franz Waibl (F)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Hans-Jörg Roth (HJ)

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland.

Marianne Fouché (M)

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland.

Stephane Rodde (S)

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland.

Sereina Riniker (S)

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.

Articles similaires

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes
Humans Insulin Resistance Muscle, Skeletal Oxidative Stress Oxidation-Reduction
Streptomyces Biofilms Anti-Bacterial Agents Peptides, Cyclic Microbial Sensitivity Tests

The conformational landscape of fold-switcher KaiB is tuned to the circadian rhythm timescale.

Hannah K Wayment-Steele, Renee Otten, Warintra Pitsawong et al.
1.00
Rhodobacter sphaeroides Bacterial Proteins Circadian Rhythm Protein Folding Protein Conformation

Classifications MeSH