Combined Metabolome and Transcriptome Analyses Unveil the Molecular Mechanisms of Fruit Acidity Variation in Litchi (
GABA
fruit acidity
fumarate
litchi
malate metabolism
metabolomics
transcriptome sequencing
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
18 Jan 2023
18 Jan 2023
Historique:
received:
24
10
2022
revised:
31
12
2022
accepted:
10
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
15
2
2023
Statut:
epublish
Résumé
Fruit acidity determines the organoleptic quality and nutritive value of most fruits. In litchi, although the organic acid composition of pulps is known, the molecular mechanisms and genes underlying variation in fruit acidity remain elusive. Herein, developing pulps of two contrasting litchi varieties, Huaizhi (HZ, low-acidity) and Boye_No.8 (B8, high-acidity), were subjected to metabolomics and transcriptomics, and the dynamic metabolome and transcriptional changes were determined. Measurements revealed that the dominant acidity-related organic acid in litchi pulps is malate, followed in low levels by citrate and tartrate. Variation in litchi pulps' acidity is mainly associated with significant differences in malate and citrate metabolisms during fruit development. Malic acid content decreased by 91.43% and 72.28% during fruit ripening in HZ and B8, respectively. The content of citric acid increased significantly in B8, while in HZ it was reduced considerably. Differentially accumulated metabolites and differentially expressed genes analyses unveiled fumarate, succinate, 2-oxoglutarate, GABA (γ-aminobutyric acid), phosphoenolpyruvate, and citrate metabolisms as the key driving pathways of litchi fruits' acidity variation. The drastic malate and citrate degradation in HZ was linked to higher induction of fumarate and GABA biosynthesis, respectively. Thirty candidate genes, including three key genes (
Identifiants
pubmed: 36768192
pii: ijms24031871
doi: 10.3390/ijms24031871
pmc: PMC9916176
pii:
doi:
Substances chimiques
malic acid
817L1N4CKP
Malates
0
gamma-Aminobutyric Acid
56-12-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : The Natural Science Foundation of Guangdong
ID : 2021A1515011031
Organisme : President's Foundation of Guangdong Academy of Agricultural Sciences
ID : 201914
Organisme : The National Key R&D Program of China
ID : 2019YFD1000900
Organisme : National Horticultural Germplasm Bank
ID : NHGRC2022-NH17
Organisme : Demonstration of key problems in litchi industry
ID : 403-2018-XMZC-0002-90 (TS-1-3)
Organisme : National Litchi longan industrial technology system
ID : CARS-32-01, CARS-33-01
Références
Molecules. 2021 Aug 24;26(17):
pubmed: 34500562
FEBS J. 2018 Jun;285(12):2205-2224
pubmed: 29688630
Int J Mol Sci. 2022 Jul 03;23(13):
pubmed: 35806406
J Sci Food Agric. 2021 Jan 30;101(2):673-683
pubmed: 32696494
Mol Plant. 2020 Aug 3;13(8):1194-1202
pubmed: 32585190
Plant Physiol Biochem. 2016 Apr;101:33-42
pubmed: 26852108
Phytochemistry. 2011 Jun;72(9):838-43
pubmed: 21440919
Plant Physiol. 2021 Dec 4;187(4):2005-2016
pubmed: 35235673
J Exp Bot. 2013 Apr;64(6):1451-69
pubmed: 23408829
Trends Plant Sci. 2010 Aug;15(8):462-70
pubmed: 20554469
Int J Mol Sci. 2020 Dec 30;22(1):
pubmed: 33396946
Phytochemistry. 2009 Jul-Aug;70(11-12):1329-44
pubmed: 19762054
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Cell Mol Life Sci. 2017 May;74(9):1577-1603
pubmed: 27838745
Planta. 2000 Oct;211(5):743-51
pubmed: 11089689
Food Res Int. 2022 Jan;151:110850
pubmed: 34980388
BMC Genomics. 2015 Aug 16;16:612
pubmed: 26276125
Nat Genet. 2022 Jan;54(1):73-83
pubmed: 34980919
Food Funct. 2021 Oct 19;12(20):9527-9548
pubmed: 34664581
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Food Chem. 2021 Jan 1;334:127567
pubmed: 32707362
J Agric Food Chem. 2021 Feb 17;69(6):1806-1815
pubmed: 33332135
Trends Plant Sci. 2016 Apr;21(4):295-301
pubmed: 26723562
Plants (Basel). 2021 Oct 15;10(10):
pubmed: 34686000
Curr Biol. 2019 Aug 19;29(16):R781-R785
pubmed: 31430470
PLoS One. 2021 Apr 29;16(4):e0238873
pubmed: 33914776
Compr Rev Food Sci Food Saf. 2020 Jul;19(4):2139-2163
pubmed: 33337091
Food Chem. 2015 Apr 1;172:86-91
pubmed: 25442527
J Food Sci Technol. 2015 Sep;52(9):5418-26
pubmed: 26344958
Bioinformatics. 2005 Sep 15;21(18):3674-6
pubmed: 16081474
Plant Mol Biol. 2013 Feb;81(3):297-307
pubmed: 23242919
Int J Mol Sci. 2021 Oct 18;22(20):
pubmed: 34681891
Food Res Int. 2021 Feb;140:110080
pubmed: 33648299
Gene. 2015 Jan 1;554(1):64-74
pubmed: 25455100
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Nat Commun. 2015 Jul 29;6:7879
pubmed: 26219411
J Med Food. 2022 Jan;25(1):61-69
pubmed: 34874786
Int J Mol Sci. 2021 May 28;22(11):
pubmed: 34071242
Mol Biol Rep. 2019 Oct;46(5):5295-5308
pubmed: 31440876
J Exp Bot. 2020 Oct 22;71(20):6238-6245
pubmed: 32761202
BMC Plant Biol. 2014 Nov 18;14:310
pubmed: 25403512