Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species.
Arabidopsis thaliana
Lux-biosensors
Oxidative stress
Seed germination
Volatile compounds
Volatile organic compounds
Journal
Folia microbiologica
ISSN: 1874-9356
Titre abrégé: Folia Microbiol (Praha)
Pays: United States
ID NLM: 0376757
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
01
08
2022
accepted:
20
01
2023
medline:
7
7
2023
pubmed:
16
2
2023
entrez:
15
2
2023
Statut:
ppublish
Résumé
Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.
Identifiants
pubmed: 36790684
doi: 10.1007/s12223-023-01038-y
pii: 10.1007/s12223-023-01038-y
doi:
Substances chimiques
2-heptanone
89VVP1B008
Agar
9002-18-0
Volatile Organic Compounds
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
617-626Subventions
Organisme : National Research Center "Kurchatov Institute"
ID : 121030200227-6
Informations de copyright
© 2023. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.
Références
Ahmad A, Viljoen AM, Chenia HY (2014) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19. https://doi.org/10.1111/lam.12343
doi: 10.1111/lam.12343
pubmed: 25346138
Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015a) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Revs 39:222–233. https://doi.org/10.1093/femsre/fuu013
doi: 10.1093/femsre/fuu013
Audrain B, Letoffe S, Ghigo JM (2015b) Airborne bacterial interactions: functions out of thin air? Front Microbiol 6:1476. https://doi.org/10.3389/fmicb.2015.01476
doi: 10.3389/fmicb.2015.01476
pubmed: 26733998
pmcid: 4686687
Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P (2018) Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 45:84–91. https://doi.org/10.1016/j.mib.2018.02.011
doi: 10.1016/j.mib.2018.02.011
pubmed: 29544125
Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85. https://doi.org/10.4161/psb.7.1.18418
doi: 10.4161/psb.7.1.18418
pubmed: 22301973
pmcid: 3357376
Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338. https://doi.org/10.1128/AEM.68.7.3328-3338.2002
doi: 10.1128/AEM.68.7.3328-3338.2002
pubmed: 12089011
pmcid: 126805
Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x
doi: 10.1111/j.1462-2920.2011.02582.x
pubmed: 21933319
Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77(3):1000–1008. https://doi.org/10.1128/AEM.01968-10
doi: 10.1128/AEM.01968-10
pubmed: 21115704
Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704. https://doi.org/10.1111/j.1758-2229.2011.00284.x
doi: 10.1111/j.1758-2229.2011.00284.x
pubmed: 23761359
Chung J, Song GC, Ryu CM (2016) Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol Biol 90:677–687. https://doi.org/10.1007/s11103-015-0344-8
doi: 10.1007/s11103-015-0344-8
pubmed: 26177913
Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM (2017) Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front Plant Sci 8:1262. https://doi.org/10.3389/fpls.2017.01262
doi: 10.3389/fpls.2017.01262
pubmed: 28785271
pmcid: 5519581
Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainshtein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352. https://doi.org/10.1111/j.1365-2672.2010.04891.x
doi: 10.1111/j.1365-2672.2010.04891.x
pubmed: 21091861
Demidyuk IV, Kalashnikov AE, Gromova TY, Gasanov EV, Safina DR, Zabolotskaya MV, Rudenskaya GN, Kostrov SV (2006) Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. Protein Expr Purif 47(2):551–561. https://doi.org/10.1016/j.pep.2005.12.005
Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. https://doi.org/10.1007/s10886-012-0135-5
doi: 10.1007/s10886-012-0135-5
pubmed: 22653567
Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Revs 55:561–585. https://doi.org/10.1128/mr.55.4.561-585.1991
doi: 10.1128/mr.55.4.561-585.1991
Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75. https://doi.org/10.1016/j.micres.2018.01.002
doi: 10.1016/j.micres.2018.01.002
pubmed: 29551213
Imlay JA (2015) Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol 69:93–108. https://doi.org/10.1146/annurev-micro-091014-104322
doi: 10.1146/annurev-micro-091014-104322
pubmed: 26070785
pmcid: 4618077
Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. https://doi.org/10.1007/s00253-008-1760-3
doi: 10.1007/s00253-008-1760-3
pubmed: 19020812
Kang BR, Anderson AJ, Kim YC (2019) Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can J Microbiol 65(3):185–190. https://doi.org/10.1139/cjm-2018-0372
doi: 10.1139/cjm-2018-0372
pubmed: 30398901
Kotova VY, Manukhov IV, Zavilgelskii GB (2010) Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl Biochem Microbiol 46:781–788. https://doi.org/10.1134/S0003683810080089
doi: 10.1134/S0003683810080089
Moisan K, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D (2019) Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 190:589–604. https://doi.org/10.1007/s00442-019-04433-w
doi: 10.1007/s00442-019-04433-w
pubmed: 31201518
pmcid: 6647456
Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186(15):4986–4993. https://doi.org/10.1128/JB.186.15.4986-4993.2004
Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell Environ 40:2042–2067. https://doi.org/10.1111/pce.13011
doi: 10.1111/pce.13011
pubmed: 28643880
Piechulla B, Lemfack MC, Magnus N (2020) Chapter 2. Bioactive bacterial volatiles: an overview and critical comments. In: Ryu C-M, Weisskopf L, Piechulla B (eds) Bacterial volatile compounds as mediators of airborne interactions. Springer Nature Singapore Pte Ltd, pp 39–92. https://doi.org/10.1007/978-981-15-7293-7_2
Plyuta V, Lipasova V, Popova A, Koksharova O, Kuznetsov A, Szegedi E, Chernin L, Khmel I (2016) Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms. APMIS 124:586–594. https://doi.org/10.1111/apm.12547
doi: 10.1111/apm.12547
pubmed: 27214244
Plyuta VA, Chernikova AS, Sidorova DE, Kupriyanova EV, Koksharova OA, Chernin LS, Khmel IA (2021) Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains. World J Microbiol Biotechnol 37:82. https://doi.org/10.1007/s11274-021-03047-w
doi: 10.1007/s11274-021-03047-w
pubmed: 33855623
Popova AA, Koksharova OA, Lipasova VA, Zaitseva JV, Katkova-Zhukotskaya OA, Eremina SI, Mironov AS, Chernin LS, Khmel IA (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster. BioMed Res Int Article ID 125704, 11 pages. https://doi.org/10.1155/2014/125704
Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare´ PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100
doi: 10.1073/pnas.0730845100
pubmed: 12684534
pmcid: 153657
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. https://doi.org/10.1104/pp.103.026583
doi: 10.1104/pp.103.026583
pubmed: 14976231
pmcid: 389924
Sanchez LA, Gomez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120. https://doi.org/10.1007/s00792-008-0203-5
doi: 10.1007/s00792-008-0203-5
pubmed: 19015813
Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:1–7. https://doi.org/10.1038/ismej.2015.42
doi: 10.1038/ismej.2015.42
Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/B507392H
doi: 10.1039/B507392H
pubmed: 17653361
Schulz S, Dickschat JS, Kunze B, Wagner-Dobler I, Diestel R, Sasse F (2010) Biological activity of volatiles from marine and terrestrial bacteria. Mar Drugs 8:2976–2987. https://doi.org/10.3390/md8122976
doi: 10.3390/md8122976
pubmed: 21339960
pmcid: 3039465
Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484. https://doi.org/10.3389/fmicb.2017.02484
doi: 10.3389/fmicb.2017.02484
pubmed: 29312193
pmcid: 5733050
Sharifi R, Ryu CM (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349–358. https://doi.org/10.1093/aob/mcy108
doi: 10.1093/aob/mcy108
pubmed: 29982345
pmcid: 6110341
Sharifi R, Ryu C-M (2020) Chapter 14. Formulation and agricultural application of bacterial volatile compounds. In: Ryu C-M, Weisskopf L, Piechulla B (eds) Bacterial volatile compounds as mediators of airborne interactions. Springer Nature Singapore Pte Ltd, pp 317–336
Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292. https://doi.org/10.1016/j.tim.2016.12.002
doi: 10.1016/j.tim.2016.12.002
pubmed: 28038926
Veselova M, Lipasova V, Protsenko MA, Buza N, Khmel IA (2009) GacS-dependent regulation of enzymic and antifungal activities and synthesis of N-acylhomoserine lactones in rhizospheric strain Pseudomonas chlororaphis 449. Folia Microbiol (Praha) 54(5):401–408. https://doi.org/10.1007/s12223-009-0056-z
Weisskopf L, Schulz S, Garbeva P (2021) Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol 19:391–404. https://doi.org/10.1038/s41579-020-00508-1
doi: 10.1038/s41579-020-00508-1
pubmed: 33526910
Zavilgelsky GB, Zarubina AP, Manukhov IV (2002) Sequencing and comparative analysis of the lux operon of Photorhabdus luminescens Strain Zm1: ERIC Elements as Putative Recombination Hot Spots. Mol Biol 36:637–647. https://doi.org/10.1023/A:1020663128043
doi: 10.1023/A:1020663128043
Zhang C, Zhang M, Yan Z, Wang F, Yuan X, Zhao S, Zhang L, Tian H, Ding Z (2021) CO
doi: 10.1007/s00299-020-02610-3
pubmed: 33009928