Deep-learning-based prognostic modeling for incident heart failure in patients with diabetes using electronic health records: A retrospective cohort study.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
11
10
2022
accepted:
02
02
2023
entrez:
22
2
2023
pubmed:
23
2
2023
medline:
25
2
2023
Statut:
epublish
Résumé
Patients with type 2 diabetes mellitus (T2DM) have more than twice the risk of developing heart failure (HF) compared to patients without diabetes. The present study is aimed to build an artificial intelligence (AI) prognostic model that takes in account a large and heterogeneous set of clinical factors and investigates the risk of developing HF in diabetic patients. We carried out an electronic health records- (EHR-) based retrospective cohort study that included patients with cardiological clinical evaluation and no previous diagnosis of HF. Information consists of features extracted from clinical and administrative data obtained as part of routine medical care. The primary endpoint was diagnosis of HF (during out-of-hospital clinical examination or hospitalization). We developed two prognostic models using (1) elastic net regularization for Cox proportional hazard model (COX) and (2) a deep neural network survival method (PHNN), in which a neural network was used to represent a non-linear hazard function and explainability strategies are applied to estimate the influence of predictors on the risk function. Over a median follow-up of 65 months, 17.3% of the 10,614 patients developed HF. The PHNN model outperformed COX both in terms of discrimination (c-index 0.768 vs 0.734) and calibration (2-year integrated calibration index 0.008 vs 0.018). The AI approach led to the identification of 20 predictors of different domains (age, body mass index, echocardiographic and electrocardiographic features, laboratory measurements, comorbidities, therapies) whose relationship with the predicted risk correspond to known trends in the clinical practice. Our results suggest that prognostic models for HF in diabetic patients may improve using EHRs in combination with AI techniques for survival analysis, which provide high flexibility and better performance with respect to standard approaches.
Identifiants
pubmed: 36809251
doi: 10.1371/journal.pone.0281878
pii: PONE-D-22-28129
pmc: PMC9943005
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0281878Informations de copyright
Copyright: © 2023 Gandin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Am Med Inform Assoc. 2009 May-Jun;16(3):371-9
pubmed: 19261943
PLoS One. 2021 Sep 13;16(9):e0239007
pubmed: 34516567
JACC Heart Fail. 2015 Feb;3(2):136-45
pubmed: 25660838
BMC Health Serv Res. 2012 Apr 25;12:103
pubmed: 22533631
Stat Med. 2013 Dec 30;32(30):5381-97
pubmed: 24027076
Sci Rep. 2022 Apr 5;12(1):5711
pubmed: 35383233
Nat Rev Cardiol. 2021 Jul;18(7):465-478
pubmed: 33526938
JACC Cardiovasc Imaging. 2019 Aug;12(8 Pt 1):1549-1565
pubmed: 31395244
Eur Heart J Digit Health. 2021 Aug 05;2(4):576-585
pubmed: 36713102
Eur Heart J. 2019 Jul 1;40(25):2058-2073
pubmed: 30815669
IEEE J Biomed Health Inform. 2021 Aug;25(8):3163-3175
pubmed: 33460387
JACC Clin Electrophysiol. 2019 Nov;5(11):1331-1341
pubmed: 31753441
BMC Med Res Methodol. 2018 Feb 26;18(1):24
pubmed: 29482517
Diabetes Res Clin Pract. 2014 Feb;103(2):137-49
pubmed: 24630390
JAMA. 2014 Jun 18;311(23):2379-80
pubmed: 24938559
N Engl J Med. 2019 Jan 24;380(4):347-357
pubmed: 30415602
Stat Med. 2020 Sep 20;39(21):2714-2742
pubmed: 32548928
Int J Cardiol. 2019 Jun 1;284:118-119
pubmed: 30558991
Eur J Heart Fail. 2021 Jul;23(7):1085-1093
pubmed: 34031968
J Biomed Inform. 2021 Sep;121:103876
pubmed: 34325021
Circulation. 2013 Oct 15;128(16):1781-9
pubmed: 24048203
J Chronic Dis. 1987;40(5):373-83
pubmed: 3558716
PLoS One. 2022 Jan 27;17(1):e0262838
pubmed: 35085334
N Engl J Med. 2015 Nov 26;373(22):2117-28
pubmed: 26378978
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):263-74
pubmed: 21984587
Diabetes Care. 2001 Sep;24(9):1614-9
pubmed: 11522708
Am Heart J. 2016 Dec;182:9-20
pubmed: 27914505
J Am Heart Assoc. 2022 May 17;11(10):e024833
pubmed: 35574959
IEEE Trans Biomed Eng. 2020 Jan;67(1):122-133
pubmed: 30951460
Nat Rev Endocrinol. 2016 Oct;12(10):616-22
pubmed: 27388988
J Stat Softw. 2011 Mar;39(5):1-13
pubmed: 27065756
Lancet Diabetes Endocrinol. 2017 Oct;5(10):788-798
pubmed: 28803840
PLoS One. 2019 Feb 13;14(2):e0211057
pubmed: 30759094