Radioactive Wastewater Treatment Technologies: A Review.
adsorption
combined processes
membrane separation
nuclear industry
nuclear waste
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
17 Feb 2023
17 Feb 2023
Historique:
received:
06
01
2023
revised:
21
01
2023
accepted:
28
01
2023
entrez:
25
2
2023
pubmed:
26
2
2023
medline:
26
2
2023
Statut:
epublish
Résumé
With the wide application of nuclear energy, the problem of radioactive pollution has attracted worldwide attention, and the research on the treatment of radioactive wastewater is imminent. How to treat radioactive wastewater deeply and efficiently has become the most critical issue in the development of nuclear energy technology. The radioactive wastewater produced after using nuclear technology has the characteristics of many kinds, high concentration, and large quantity. Therefore, it is of great significance to study the treatment technology of radioactive wastewater in reprocessing plants. The process flow and waste liquid types of the post-treatment plant are reviewed. The commonly used evaporation concentration, adsorption, precipitation, ion exchange, biotechnology, membrane separation, and photocatalysis are summarized. The basic principles and technological characteristics of them are introduced. The advantages and disadvantages of different single and combined processes are compared, and the development trend of future processing technology is prospected.
Identifiants
pubmed: 36838922
pii: molecules28041935
doi: 10.3390/molecules28041935
pmc: PMC9965242
pii:
doi:
Substances chimiques
Wastewater
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : No. 52272096
Références
Water Sci Technol. 2018 Nov;78(8):1733-1740
pubmed: 30500797
Appl Radiat Isot. 2012 Feb;70(2):369-74
pubmed: 22078459
J Hazard Mater. 2020 Jun 15;392:122350
pubmed: 32109799
Chemosphere. 2018 Dec;212:114-123
pubmed: 30144672
J Hazard Mater. 2010 Oct 15;182(1-3):552-6
pubmed: 20633988
Environ Sci Technol. 2017 May 16;51(10):5666-5674
pubmed: 28409920
Environ Sci Technol. 2014 Sep 2;48(17):10045-53
pubmed: 25126837
J Hazard Mater. 2016 Jan 25;302:82-89
pubmed: 26448493
J Hazard Mater. 2006 Sep 1;137(1):332-5
pubmed: 16563616
Water Sci Technol. 2015;71(11):1727-33
pubmed: 26038939
Water Res. 2017 Nov 15;125:81-90
pubmed: 28834769
Environ Sci Technol. 2017 Dec 19;51(24):14368-14378
pubmed: 29182330
Environ Sci Technol. 2013;47(21):12351-8
pubmed: 24102177
J Environ Radioact. 2012 Feb;105:76-84
pubmed: 22204752
J Environ Radioact. 2017 Dec;180:27-35
pubmed: 29024816
Dalton Trans. 2017 Nov 7;46(43):14762-14770
pubmed: 28875200
Chemosphere. 2018 Sep;207:239-254
pubmed: 29803156
Appl Radiat Isot. 2019 May;147:40-47
pubmed: 30798204
Chemosphere. 2014 Dec;117:679-91
pubmed: 25461935
Saudi J Biol Sci. 2017 Jan;24(1):1-10
pubmed: 28053564
Appl Radiat Isot. 2019 Jul;149:96-103
pubmed: 31048202
J Hazard Mater. 2012 Dec;243:124-9
pubmed: 23116720
J Colloid Interface Sci. 2019 Feb 1;535:265-275
pubmed: 30312952
J Hazard Mater. 2008 Jun 15;154(1-3):963-72
pubmed: 18162294