Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species.
Agrobacterium
Biolistic
Model species
Nanoparticle
Plant biotechnology
Protoplast
Journal
Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
30
07
2024
accepted:
07
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Identifiants
pubmed: 39467894
doi: 10.1007/s00299-024-03359-9
pii: 10.1007/s00299-024-03359-9
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
273Subventions
Organisme : National Science Foundation
ID : EDGE IOS-1923557
Organisme : National Institute of Food and Agriculture
ID : Hatch project 1007567
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abe F, Nakamura S, Mori M, Ashikawa I (2020) Low-temperature pretreatment of explants and high maltose concentration during callus culture improves particle-bombardment-mediated stable transgene expression in common wheat. Plant Biotechnol 37(2):177–184. https://doi.org/10.5511/plantbiotechnology.19.1216d
doi: 10.5511/plantbiotechnology.19.1216d
Acanda Y, Chunxia W, Amit L (2019) Gene Expression in citrus plant cells using Helios® gene gun system for particle bombardment. In: Catara AF, BarJoseph M, Licciardello G (eds) Citrus tristeza virus: methods and protocols. Totowa: Humana Press Inc. pp. 219–28
Aesaert S, Impens L, Coussens G, Van Lerberge E, Vanderhaeghen R, Desmet L, Vanhevel Y et al (2022) Optimized transformation and gene editing of the B104 public maize inbred by improved tissue culture and use of morphogenic regulators. Front Plant Sci 13:883847. https://doi.org/10.3389/fpls.2022.883847
doi: 10.3389/fpls.2022.883847
pubmed: 35528934
pmcid: 9072829
Ahmed MAA, Miao M, Pratsinakis ED, Zhang H, Wang W, Yuan Y, Lyu M et al (2021) Protoplast isolation, fusion, culture and transformation in the woody plant Jasminum Spp. Agric Basel 11(8):699. https://doi.org/10.3390/agriculture11080699
doi: 10.3390/agriculture11080699
Allah KWA, Ezz EDGHA, Kasem ZA, Eman TH, Ashraf BAR (2023) Phoenix dactylifera in vitro culture and transformation of Thio-60 antifungal gene via chitosan nanoparticle. Plant Cell Tissue Organ Cult (PCTOC). 155(2): 603–12. https://doi.org/10.1007/s11240-023-02505-7
Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15(3):305–327. https://doi.org/10.1007/s11032-004-8001-y
doi: 10.1007/s11032-004-8001-y
Anand A, Bass SH, Emily Wu, Wang N, McBride KE, Annaluru N, Miller M, Hua Mo, Jones TJ (2018) An improved ternary vector system for agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97(1–2):187–200. https://doi.org/10.1007/s11103-018-0732-y
doi: 10.1007/s11103-018-0732-y
pubmed: 29687284
pmcid: 5945794
Anderson DJ, Birch RG (2012) Minimal handling and super-binary vectors facilitate efficient, agrobacterium-mediated, transformation of sugarcane (Saccharum Spp. hybrid). Trop Plant Biol 5(2):183–192. https://doi.org/10.1007/s12042-012-9101-1
doi: 10.1007/s12042-012-9101-1
Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384. https://doi.org/10.1111/ppl.12731
doi: 10.1111/ppl.12731
pubmed: 29572864
Arencibia A, Molina PR, de la Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14(5):305–309. https://doi.org/10.1007/BF00232033
doi: 10.1007/BF00232033
pubmed: 24186765
Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K-I (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11(2):93–99. https://doi.org/10.1093/dnares/11.2.93
doi: 10.1093/dnares/11.2.93
pubmed: 15449542
Azizi-Dargahlou S, Mahin P (2023) Agrobacterium tumefaciens-mediated plant transformation: a review. Mol Biotechnol. https://doi.org/10.1007/s12033-023-00788-x
doi: 10.1007/s12033-023-00788-x
pubmed: 37340198
Bahari Z, Sima S, Ali N, Alireza A (2020) The application of an agrobacterium-mediated in planta transformation system in a catharanthus roseus medicinal plant. Czech J Genet Plant Breed. 56(1): 34–41. https://doi.org/10.17221/153/2018-CJGPB
Basso MF, Brito BAD, da Cunha A, Ribeiro P, Martins PK, Rodrigo W, de Souza N, de Oliveira G, Nakayama TJ et al (2017) Improved genetic transformation of sugarcane (Saccharum Spp.) embryogenic callus mediated by Agrobacterium tumefaciens. Curr Protoc Plant Biol 2(3):221–239. https://doi.org/10.1002/cppb.20055
doi: 10.1002/cppb.20055
pubmed: 31725972
Baucom RS, Chang S-M, Kniskern JM, Rausher MD, Stinchcombe JR (2011) Morning glory as a powerful model in ecological genomics: tracing adaptation through both natural and artificial selection. Heredity 107(5):377–385. https://doi.org/10.1038/hdy.2011.25
doi: 10.1038/hdy.2011.25
pubmed: 21448228
pmcid: 3199921
Bekalu ZE, Panting M, Holme IB, Brinch-Pedersen H (2023) Opportunities and challenges of in vitro tissue culture systems in the era of crop genome editing. Int J Mol Sci 24(15):11920. https://doi.org/10.3390/ijms241511920
doi: 10.3390/ijms241511920
pubmed: 37569295
pmcid: 10419073
Bennur PL, Martin OB, Shyama CF, Monika SD (2024) Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. J Exp Bot. https://doi.org/10.1093/jxb/erae189
Benson EE (2000) Special symposium. In vitro plant recalcitrance in vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant 36(3):141–148. https://doi.org/10.1007/s11627-000-0029-z
doi: 10.1007/s11627-000-0029-z
Bull T, Debernardi J, Reeves M, Hill T, Bertier L, Van Deynze A, Michelmore R (2023) GRF–GIF chimeric proteins enhance in vitro regeneration and agrobacterium-mediated transformation efficiencies of lettuce (Lactuca Spp.). Plant Cell Rep 42(3):629–643. https://doi.org/10.1007/s00299-023-02980-4
doi: 10.1007/s00299-023-02980-4
pubmed: 36695930
pmcid: 10042933
Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Tsitol Genet 49(6):3–12
pubmed: 26841488
Calsa TJ, Carraro DM, Benatti MR, Barbosa AC, Kitajima JP, Carrer H (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46(6):366–373. https://doi.org/10.1007/s00294-004-0542-4
doi: 10.1007/s00294-004-0542-4
Canto T (2016) Transient expression systems in plants: potentialities and constraints. In: Vega MC (eds) Advanced technologies for protein complex production and characterization. Cham: Springer International Publishing Ag. pp. 287–301
Cao X, Xie H, Song M, Jinghua Lu, Ma P, Huang B, Wang M et al (2022) Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. Innov 4(1):100345. https://doi.org/10.1016/j.xinn.2022.100345
doi: 10.1016/j.xinn.2022.100345
Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, Orozco-Cárdenas ML (2013) Evaluation of four agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar micro-tom. Plant Cell Rep 32(2):239–247. https://doi.org/10.1007/s00299-012-1358-1
doi: 10.1007/s00299-012-1358-1
pubmed: 23099543
Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11(2):263–271. https://doi.org/10.1016/0092-8674(77)90043-5
doi: 10.1016/0092-8674(77)90043-5
pubmed: 890735
Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained byin planta electroporation-mediated gene transfer. Mol Biotechnol 5(2):85–96. https://doi.org/10.1007/BF02789058
doi: 10.1007/BF02789058
pubmed: 8734422
Chupeau M-C, Pautot V, Chupeau Y (1994) Recovery of transgenic trees after electroporation of poplar protoplasts. Transgenic Res 3(1):13–19. https://doi.org/10.1007/BF01976022
doi: 10.1007/BF01976022
Clegg MT, Durbin ML (2003) Tracing floral adaptations from ecology to molecules. Nat Rev Genet 4(3):206–215. https://doi.org/10.1038/nrg1023
doi: 10.1038/nrg1023
pubmed: 12610525
Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897. https://doi.org/10.1016/j.tibtech.2018.03.009
doi: 10.1016/j.tibtech.2018.03.009
pubmed: 29703583
pmcid: 10461776
Cunningham FJ, Gozde SD, Natalie SG, Huan Z, Markita PL (2020) Nanobiolistics: an emerging genetic transformation approach. In: Sachin R, Hong L (eds) Biolistic DNA delivery in plants. New York: Springer US. pp. 141–59
Davlekamova AA, Zubritsky AV, Timofeeva TA, Yakovleva IV, Kamionskaya AM (2023) Optimization of biolistic transformation parameters for Nicotiana tabacum. Appl Biochem Microbiol 59(3):368–372. https://doi.org/10.1134/S0003683823030055
doi: 10.1134/S0003683823030055
Debernardi JM, Rowan BA (2022) Make it a combo. Nat Plants 8(5):457–458. https://doi.org/10.1038/s41477-022-01155-5
doi: 10.1038/s41477-022-01155-5
pubmed: 35596078
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, Palatnik JF, Dubcovsky J (2020) A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38(11):1274–1279. https://doi.org/10.1038/s41587-020-0703-0
doi: 10.1038/s41587-020-0703-0
pubmed: 33046875
pmcid: 7642171
Dhir SK, Oglesby J, Bhagsari AS (1998) Plant regeneration via somatic embryogenesis, and transient gene expression in sweet potato protoplasts. Plant Cell Rep 17(9):665–669. https://doi.org/10.1007/s002990050462
doi: 10.1007/s002990050462
pubmed: 30736523
Díaz I (1994) Optimization of conditions for DNA uptake and transient GUS expression in protoplasts for different tissues of wheat and barley. Plant Sci 96(1–2):179–187. https://doi.org/10.1016/0168-9452(94)90235-6
doi: 10.1016/0168-9452(94)90235-6
Ding X, Lu Yu, Chen L, Li Y, Zhang J, Sheng H, Ren Z et al (2022) Recent progress and future prospect of CRISPR/Cas-derived transcription activation (CRISPRa) system in plants. Cells 11(19):3045. https://doi.org/10.3390/cells11193045
doi: 10.3390/cells11193045
pubmed: 36231007
pmcid: 9564188
Doyle C, Katie H, Thomas AS, Mark W, Christopher B, David BA, Taryn F, Carmen GM, Keith E, Heather MW (2019) A simple method for spray-on gene editing in planta. bioRxiv. https://doi.org/10.1101/805036
Duarte P, Diana R, Ines C, Sara B, Mariana S (2016) Protoplast transformation as a plant-transferable transient expression system.” In: FettNeto AG (eds) Biotechnology of plant secondary metabolism: methods and protocols. Totowa: Humana Press Inc. pp. 137–48
Elghabi Z, Ruf S, Bock R (2011) Biolistic co-transformation of the nuclear and plastid genomes. Plant J 67(5):941–948. https://doi.org/10.1111/j.1365-313X.2011.04631.x
doi: 10.1111/j.1365-313X.2011.04631.x
pubmed: 21554457
Evans DL, Hlongwane TT, Joshi S, Riano DM, Pachon. (2019) The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ 7:e7558. https://doi.org/10.7717/peerj.7558
doi: 10.7717/peerj.7558
Farooq N, Ather L, Shafiq M, Nawaz-ul-Rehman MS, Haseeb M, Anjum T, Abbas Q et al (2022) Magnetofection approach for the transformation of okra using green iron nanoparticles. Sci Rep 12(1):16568. https://doi.org/10.1038/s41598-022-20569-x
doi: 10.1038/s41598-022-20569-x
pubmed: 36195624
pmcid: 9532403
Fu YQ, Li L, Wang PW, Qu J, Fu YP, Wang H, Sun JR, Lu CL (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. 28(4): 672–76
Fu Y, Li L, Wang H, Jiang Y, Liu H, Cui X, Wang P, Changli Lu (2015) Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum. Chem Res Chin Univ 31(6):976–981. https://doi.org/10.1007/s40242-015-5088-0
doi: 10.1007/s40242-015-5088-0
Furuhata Y, Sakai A, Murakami T, Morikawa M, Nakamura C, Yoshizumi T, Fujikura U, Nishida K, Kato Y (2019) A method using electroporation for the protein delivery of cre recombinase into cultured arabidopsis cells with an intact cell wall. Sci Rep 9(1):2163. https://doi.org/10.1038/s41598-018-38119-9
doi: 10.1038/s41598-018-38119-9
pubmed: 30770845
pmcid: 6377677
Furukawa K, Koizumi M, Hayashi W, Mochizuki H, Yamaki K (2020) Pretreatment and posttreatment in the biolistic transformation of tea plant (Camellia sinensis) somatic embryos. Plant Biotechnol 37(2):195–203. https://doi.org/10.5511/plantbiotechnology.20.0404a
doi: 10.5511/plantbiotechnology.20.0404a
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL (2021) An overview of methods and tools for transfection of eukaryotic cells in vitro. Front Bioeng Biotechnol 9:701031. https://doi.org/10.3389/fbioe.2021.701031
doi: 10.3389/fbioe.2021.701031
pubmed: 34354988
pmcid: 8330802
Gahrtz M, Stolz J, Sauer N (1994) A phloem-specific sucrose-H
doi: 10.1046/j.1365-313X.1994.6050697.x
pubmed: 8000426
Gelvin SB (2003) Agrobacterium -mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67(1):16–37. https://doi.org/10.1128/MMBR.67.1.16-37.2003
doi: 10.1128/MMBR.67.1.16-37.2003
pubmed: 12626681
pmcid: 150518
Gelvin SB (2010) Manipulating plant histone genes to improve agrobacterium- and direct DNA-mediated plant genetic transformation
Geng Y, Yan An, Zhou Y (2022) Positional cues and cell division dynamics drive meristem development and archegonium formation in ceratopteris gametophytes. Commun Biol 5(1):1–14. https://doi.org/10.1038/s42003-022-03627-y
doi: 10.1038/s42003-022-03627-y
Gong J, Yishan C, Yanna X, Miaofeng G, Haijie M, Xiaoli H, Xiaolong L, Chen J, Xuepeng S (2024) Tracking organelle activities through efficient and stable root genetic transformation system in woody plants. Hortic Res. 11(1): uhad262. https://doi.org/10.1093/hr/uhad262
Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T (2019) Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8(2):38. https://doi.org/10.3390/plants8020038
doi: 10.3390/plants8020038
pubmed: 30754699
pmcid: 6409764
Grogg D, Rohner M, Yates S, Manzanares C, Bull SE, Dalton S, Bosch M, Studer B, Broggini GAL (2022) Callus induction from diverse explants and genotypes enables robust transformation of perennial ryegrass (Lolium perenne L.). Plants 11(15):2054. https://doi.org/10.3390/plants11152054
doi: 10.3390/plants11152054
pubmed: 35956532
pmcid: 9370183
Guerche P, Bellini C, Le Moullec J-M, Caboche M (1987) Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69(6–7):621–628. https://doi.org/10.1016/0300-9084(87)90181-7
doi: 10.1016/0300-9084(87)90181-7
pubmed: 3120796
Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of datura in vitro. Nature 212(5057):97–98. https://doi.org/10.1038/212097a0
doi: 10.1038/212097a0
Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, Sohani MM (2019) Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Sci Hortic 243:367–375. https://doi.org/10.1016/j.scienta.2018.08.040
doi: 10.1016/j.scienta.2018.08.040
Hajiahmadi Z, Reza SK, Mahmood K, Mohammad MS, Jahangir K (2020) A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum. Biotech. 10(8): 370. https://doi.org/10.1007/s13205-020-02359-2
Hamada H, Linghu Q, Nagira Y, Miki R, Taoka N, Imai R (2017) An in planta biolistic method for stable wheat transformation. Sci Rep 7(1):11443. https://doi.org/10.1038/s41598-017-11936-0
doi: 10.1038/s41598-017-11936-0
pubmed: 28904403
pmcid: 5597576
He Y, Zhang T, Sun H, Zhan H, Zhao Y (2020) A reporter for noninvasively monitoring gene expression and plant transformation. Hortic Res 7(1):152. https://doi.org/10.1038/s41438-020-00390-1
doi: 10.1038/s41438-020-00390-1
pubmed: 33024566
pmcid: 7502077
Healey AL, Garsmeur O, Lovell JT, Shengquiang S, Sreedasyam A, Jenkins J, Plott CB et al (2024) The complex polyploid genome architecture of sugarcane. Nature 628(8009):804–810. https://doi.org/10.1038/s41586-024-07231-4
doi: 10.1038/s41586-024-07231-4
pubmed: 38538783
pmcid: 11041754
Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30(6):1107–1115. https://doi.org/10.1007/s00299-011-1018-x
doi: 10.1007/s00299-011-1018-x
pubmed: 21305301
pmcid: 3092944
Herliana L, Schwerdt JG, Neumann TR, Severn-Ellis A, Phan JL, Cowley JM, Shirley NJ et al (2023) A chromosome-level genome assembly of plantago ovata. Sci Rep 13(1):1528. https://doi.org/10.1038/s41598-022-25078-5
doi: 10.1038/s41598-022-25078-5
pubmed: 36707685
pmcid: 9883528
Hoang NV, Furtado A, McQualter RB, Henry RJ (2015) Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy. New Negat in Plant Sci 1–2:33–45. https://doi.org/10.1016/j.neps.2015.10.001
doi: 10.1016/j.neps.2015.10.001
Hoerster G, Wang N, Ryan L, Emily Wu, Anand A, McBride K, Lowe K, Jones T, Gordon-Kamm B (2020) Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cell Dev Biol Plant 56(3):265–279. https://doi.org/10.1007/s11627-019-10042-2
doi: 10.1007/s11627-019-10042-2
Hofmann NR (2016) A breakthrough in monocot transformation methods. Plant Cell 28(9):1989–1989. https://doi.org/10.1105/tpc.16.00696
doi: 10.1105/tpc.16.00696
pubmed: 27600535
pmcid: 5059816
Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T, Shin-I T et al (2016) Genome sequence and analysis of the Japanese morning glory ipomoea nil. Nat Commun 7(1):13295. https://doi.org/10.1038/ncomms13295
doi: 10.1038/ncomms13295
pubmed: 27824041
pmcid: 5105172
Huang J, Huang Z, Zhou X, Xia C, Imran M, Wang S, Congshan Xu, Zha M, Liu Y, Zhang C (2019) Tissue-specific transcriptomic profiling of plantago major provides insights for the involvement of vasculature in phosphate deficiency responses. Mol Genet Genom 294(1):159–175. https://doi.org/10.1007/s00438-018-1496-4
doi: 10.1007/s00438-018-1496-4
Hussien ET (2020) Production of transgenic paulownia tomentosa (Thunb.) Steud. using chitosan nanoparticles to express antimicrobial genes resistant to bacterial infection. Mol Biol Res Commun. 9(2): 55–62. https://doi.org/10.22099/mbrc.2019.35331.1454
Imai R, Hamada H, Liu Y, Linghu Q, Kumagai Y, Nagira Y, Miki R, Taoka N (2020) In planta particle bombardment (iPB): a new method for plant transformation and genome editing. Plant Biotechnol 37(2):171–176. https://doi.org/10.5511/plantbiotechnology.20.0206a
doi: 10.5511/plantbiotechnology.20.0206a
Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H et al (2018) A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18:135. https://doi.org/10.1186/s12870-018-1326-1
doi: 10.1186/s12870-018-1326-1
pubmed: 29940859
pmcid: 6020210
Jiang Y, Wei X, Zhu M, Zhang X, Jiang Q, Wang ZiXiao, Cao Y, An X, Wan X (2024) Developmental regulators in promoting genetic transformation efficiency in maize and other plants. Curr Plant Biol 40:100383. https://doi.org/10.1016/j.cpb.2024.100383
doi: 10.1016/j.cpb.2024.100383
Jones-Villeneuve E, Huang B, Prudhomme I, Bird S, Kemble R, Hattori J, Miki B (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tissue Organ Cult 40(1):97–100. https://doi.org/10.1007/BF00041124
doi: 10.1007/BF00041124
Joshi J, Beslin SG, Birla Singh KK, Kumar E, Kokiladevi L, Arul PB, Sudhakar D (2015) A maize α-zein promoter drives an endosperm-specific expression of transgene in rice. Physiol Mol Biol Plants 21(1):35–42. https://doi.org/10.1007/s12298-014-0268-9
doi: 10.1007/s12298-014-0268-9
pubmed: 25649529
Kale SD, Brett MT (2011) Assaying effector function in planta using double-barreled particle bombardment. In: McDowell JM (eds) Plant immunity: methods and protocols. Totowa: Humana Press Inc. pp. 712:153–72
Karlson CK, Soong SN, Mohd-Noor NN, Tan BC (2021) CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants 10(10):2055. https://doi.org/10.3390/plants10102055
doi: 10.3390/plants10102055
pubmed: 34685863
pmcid: 8540305
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA (2021) Agroinfiltration mediated scalable transient gene expression in genome edited crop plants. Int J Mol Sci 22(19):10882. https://doi.org/10.3390/ijms221910882
doi: 10.3390/ijms221910882
pubmed: 34639221
pmcid: 8509792
Kharel A, Rookes J, Ziemann M, Cahill D (2024) Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. Protoplasma. https://doi.org/10.1007/s00709-024-01953-y
doi: 10.1007/s00709-024-01953-y
pubmed: 38702562
pmcid: 11358197
Kikuchi R, Sage-Ono K, Kamada H, Ono M (2005) Efficient transformation mediated by agrobacterium tumefaciens with a ternary plasmid in pharbitis nil. Plant Biotechnol 22(4):295–302. https://doi.org/10.5511/plantbiotechnology.22.295
doi: 10.5511/plantbiotechnology.22.295
Komari T, Yoshimitsu T, Jun U, Norio K, Yuji I, Yukoh H (2006) Binary vectors and super-binary vectors. In: Kan W (eds) Agrobacterium protocols. Totowa: Humana Press. pp. 15–42
Kuriakose B, Du Toit ES, Jordaan A (2012) Transient gene expression assays in rose tissues using a bio-rad Helios® hand-held gene gun. S Afr J Bot 78:307–311. https://doi.org/10.1016/j.sajb.2011.06.002
doi: 10.1016/j.sajb.2011.06.002
Kyo M, Maida K, Nishioka Y, Matsui K (2018) Coexpression of WUSCHEL related homeobox (WOX) 2 with WOX8 or WOX9 promotes regeneration from leaf segments and free cells in Nicotiana tabacum L. Plant Biotechnol 35(1):23–30. https://doi.org/10.5511/plantbiotechnology.18.0126a
doi: 10.5511/plantbiotechnology.18.0126a
Lacroix B, Vitaly C (2020) Biolistic approach for transient gene expression studies in plants. Methods Mol Biol (Clifton, N.J.). 2124: 125–39. https://doi.org/10.1007/978-1-0716-0356-7_6
Lee K, Wang K (2023) Strategies for genotype-flexible plant transformation. Curr Opin Biotechnol 79:102848. https://doi.org/10.1016/j.copbio.2022.102848
doi: 10.1016/j.copbio.2022.102848
pubmed: 36463838
Levengood H, Dou Y, Fan J, Bajszar A, Huang J, Abbas SM, Zhou Y, Zhang C (2023) Agrobacterium tumefaciens-mediated genetic transformation of narrowleaf plantain. J vis Exp 193:64777. https://doi.org/10.3791/64777
doi: 10.3791/64777
Li S, Wang S, Yang H (2000) Transformation of plant young proembryos by electroporation. Chin Sci Bull 45(13):1202–1206. https://doi.org/10.1007/BF02886080
doi: 10.1007/BF02886080
Li C, Muhammad AI (2024) Leveraging the sugarcane CRISPR/Cas9 technique for genetic improvement of non-cultivated grasses. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1369416
Lian Z, Nguyen CD, Liu Li, Wang G, Chen J, Wang S, Yi G et al (2022) Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol J 20(8):1622–1635. https://doi.org/10.1111/pbi.13837
doi: 10.1111/pbi.13837
pubmed: 35524453
pmcid: 9342618
Liu J, Nannas NJ, Fang-fang Fu, Shi J, Aspinwall B, Parrott WA, Kelly Dawe R (2019a) Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31(2):368–383. https://doi.org/10.1105/tpc.18.00613
doi: 10.1105/tpc.18.00613
pubmed: 30651345
pmcid: 6447018
Liu M, Feng S, Ma Y, Xie C, He X, Ding Y, Zhang J et al (2019b) Influence of surface charge on the phytotoxicity, transformation, and translocation of CeO
doi: 10.1021/acsami.9b01627
Liu X, Xiao MB, Xuelei L, Menglu L, Hongzhe W, Xiaoyu Z, Yiman Y, Chunyan Z, Xian SZ, Jun X (2023) Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature
Liu Y, Zhang S, Zhang S, Zhang H, Li G, Sun R, Li F (2024) Efficient transformation of the isolated microspores of Chinese cabbage (Brassica Rapa L. Ssp. Pekinensis) by particle bombardment. Plant Methods 20(1):17. https://doi.org/10.1186/s13007-024-01134-1
doi: 10.1186/s13007-024-01134-1
pubmed: 38291463
pmcid: 10826076
Long Y, Yang Y, Pan G, Shen Y (2022) New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13:926752. https://doi.org/10.3389/fpls.2022.926752
doi: 10.3389/fpls.2022.926752
pubmed: 35845646
pmcid: 9280033
Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh T-F, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant 11(2):245–256. https://doi.org/10.1016/j.molp.2017.11.010
doi: 10.1016/j.molp.2017.11.010
pubmed: 29197638
Lowe K, Emily Wu, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C et al (2016) Morphogenic regulators Baby Boom and Wuschel improve monocot transformation. Plant Cell 28(9):1998–2015. https://doi.org/10.1105/tpc.16.00124
doi: 10.1105/tpc.16.00124
pubmed: 27600536
pmcid: 5059793
Loyola-Vargas VM, Neftalí OA (2018) An introduction to plant tissue culture: advances and perspectives. In: Víctor MLV, Neftalí OA (eds) Plant cell culture protocols. New York: Springer. pp. 3–13
Lu J, Li S, Deng S, Wang M, Yinghuang Wu, Li M, Dong J et al (2024) A Method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnol J 22(7):1981–1988. https://doi.org/10.1111/pbi.14318
doi: 10.1111/pbi.14318
pubmed: 38425137
pmcid: 11182575
Luo B-X, Zhang Li, Zheng F, Kun-Lin Wu, Li L, Zhang X-H, Ma G-H, Teixeira JA, Silva Da, Fang L, Zeng S-J (2020) Ovule development and in planta transformation of paphiopedilum maudiae by agrobacterium-mediated ovary-injection. Int J Mol Sci 22(1):84. https://doi.org/10.3390/ijms22010084
doi: 10.3390/ijms22010084
pubmed: 33374823
pmcid: 7795287
Lutz KA, Martin C, Khairzada S, Maliga P (2015) Steroid-inducible BABY BOOM system for development of fertile arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep 34(10):1849–1856. https://doi.org/10.1007/s00299-015-1832-7
doi: 10.1007/s00299-015-1832-7
pubmed: 26156330
Lv Z, Jiang R, Chen J, Chen W (2020) Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J 104(4):880–891. https://doi.org/10.1111/tpj.14973
doi: 10.1111/tpj.14973
pubmed: 32860436
Lyu S, Qiming M, Hui L, Baosheng W, Jun W, Hans L, Zhengfeng W, Bin D, Zhanfeng L, Shulin D (2023) Genome assembly of the pioneer species Plantago major L. (Plantaginaceae) provides insight into its global distribution and adaptation to metal-contaminated soil. DNA Res. 30(4): dsad013. https://doi.org/10.1093/dnares/dsad013
Maas C, Werr W (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8(3):148–151. https://doi.org/10.1007/BF00716828
doi: 10.1007/BF00716828
pubmed: 24233091
Mahdavi F, Mahmood M, Noor NM (2014) Optimization of particle bombardment parameters for DNA delivery into the male flowers of banana. Biologia 69(7):888–894. https://doi.org/10.2478/s11756-014-0391-7
doi: 10.2478/s11756-014-0391-7
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38(1):84–89. https://doi.org/10.1038/s41587-019-0337-2
doi: 10.1038/s41587-019-0337-2
pubmed: 31844292
Malakhova NP, Skiba YA, Iskakova GA, Naizabayeva DA, Tezekbaeva BK, Ismagulova GA, Maltseva ER (2021) A positive experience in applying the biolistic approach to potato varieties aksor and nevskiy. Vavilov J Genet Breed. 25(2): 157–63. https://doi.org/10.18699/VJ21.019
Malnoy M, Roberto V, Min-Hee J, Ok-Jae K, Seokjoong K, Jin-Soo K, Riccardo V, Chidananda NK (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01904
Martin-Ortigosa S, Kan W (2020) Proteolistics: a protein delivery method. In: Rustgi S, Luo H (eds) Biolistic DNA delivery in plants: methods and protocols. Totowa: Humana Press Inc. pp. 295–307
Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32(10):1557–1574. https://doi.org/10.1007/s00299-013-1467-5
doi: 10.1007/s00299-013-1467-5
pubmed: 23749098
Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A (2015) Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Rep 34(10):1835–1848. https://doi.org/10.1007/s00299-015-1831-8
doi: 10.1007/s00299-015-1831-8
pubmed: 26152769
Men S, Ming X, Wang Y, Liu R, Wei C, Li Y, Wang Y, Liu R (2003) Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21(6):592–598. https://doi.org/10.1007/s00299-002-0559-4
doi: 10.1007/s00299-002-0559-4
pubmed: 12789435
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, Cao H, Li H, Yujie Fu (2019) Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnol J 17(9):1804–1813. https://doi.org/10.1111/pbi.13101
doi: 10.1111/pbi.13101
pubmed: 30803117
pmcid: 6686128
Miller K, Eggenberger AL, Lee K, Liu F, Kang M, Drent M, Ruba A, Kirscht T, Wang K, Jiang S (2021) An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Sci Rep 11(1):7695. https://doi.org/10.1038/s41598-021-86549-9
doi: 10.1038/s41598-021-86549-9
pubmed: 33833247
pmcid: 8032657
Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP (2017) Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36(9):1477–1491. https://doi.org/10.1007/s00299-017-2169-1
doi: 10.1007/s00299-017-2169-1
pubmed: 28681159
pmcid: 5565672
Mori K, Tanase K, Sasaki K (2024) Novel electroporation-based genome editing of carnation plant tissues using RNPs targeting the anthocyanidin synthase gene. Planta 259(4):1–11. https://doi.org/10.1007/s00425-024-04358-6
doi: 10.1007/s00425-024-04358-6
Mortazavi SE, Zohrabi Z (2018) Biolistic co-transformation of rice using gold nanoparticles
Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227(5):1079–1089. https://doi.org/10.1007/s00425-007-0682-0
doi: 10.1007/s00425-007-0682-0
pubmed: 18188589
pmcid: 2270920
Naqvi S, Maitra AN, Abdin MZ, Akmal Md, Arora I, Samim Md (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22(8):3500–3507. https://doi.org/10.1039/c2jm11739h
doi: 10.1039/c2jm11739h
Nawaz M, Naeem I, Rabia H, Mehwish M, Shakra J (2021) Agrobacterium mediated transformation optimizations for sugarcane (Saccharum officinarum L.) cultivar SPF-234 with direct organogenesis. J Bioresour Manag. 8(2): 61–71. https://doi.org/10.35691/JBM.1202.0181
Niazian M, Seyed ASN, Petr G, Mahdi M (2017) Tissue culture-based agrobacterium-mediated and in planta transformation methods. Czech J Genet Plant Breed. 53: 133–43. https://doi.org/10.17221/177/2016-CJGPB
Nomura K, Komamine A (1986) Embryogenesis from microinjected single cells in a carrot cell suspension culture. Plant Sci 44(1):53–58. https://doi.org/10.1016/0168-9452(86)90168-8
doi: 10.1016/0168-9452(86)90168-8
Noraini T, Amirul-Aiman AJ, Ruzi AR, Bunawan H, Nurdiana SF (2021) Adaptation and taxonomic value of leaf anatomical characteristics of selected ipomoea L. species.” J Environ Biol. 42: 872–78. https://doi.org/10.22438/jeb42/3(SI)/JEB-20
Nugent GD, ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24(6):341–349. https://doi.org/10.1007/s00299-005-0930-3
doi: 10.1007/s00299-005-0930-3
pubmed: 15965679
Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea Var. Botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170(1):135–142. https://doi.org/10.1016/j.plantsci.2005.08.020
doi: 10.1016/j.plantsci.2005.08.020
Okura VK, Rafael SCS de, Susely FST de, Paulo A (2016) BAC-pool sequencing and assembly of 19 mb of the complex sugarcane genome. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00342
Ondřej M, Matoušek J, Vlasák J (1987) Differentiation of transformed plants from tumors induced by Agrobacterium rubi ATCC 13335. J Plant Physiol 126(4):397–407. https://doi.org/10.1016/S0176-1617(87)80025-1
doi: 10.1016/S0176-1617(87)80025-1
Ono M, Sage-Ono K, Kawakami M, Hasebe M, Ueda K, Masuda K, Inoue M, Kamada H (2000) Agrobacterium-mediated transformation and regeneration of pharbitis nil. Plant Biotechnol 17(3):211–216. https://doi.org/10.5511/plantbiotechnology.17.211
doi: 10.5511/plantbiotechnology.17.211
Ozyigit II (2020) Gene transfer to plants by electroporation: methods and applications. Mol Biol Rep 47(4):3195–3210. https://doi.org/10.1007/s11033-020-05343-4
doi: 10.1007/s11033-020-05343-4
pubmed: 32242300
Ozyigit II, Kurtoglu KY (2020) Particle bombardment technology and its applications in plants. Mol Biol Rep 47(12):9831–9847. https://doi.org/10.1007/s11033-020-06001-5
doi: 10.1007/s11033-020-06001-5
pubmed: 33222118
Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-combo system. Nat Plants 8(5):513–525. https://doi.org/10.1038/s41477-022-01151-9
doi: 10.1038/s41477-022-01151-9
pubmed: 35596077
Park I, Sungyu Y, Wook JK, Pureum N, Hyun OL, Byeong CM (2018) The complete chloroplast genomes of six ipomoea species and indel marker development for the discrimination of authentic pharbitidis semen (Seeds of I. Nil or I. Purpurea). Front Plant Sci. https://doi.org/10.3389/fpls.2018.00965
Penczykowski RM, Drew Sieg R (2021) Plantago Spp. as models for studying the ecology and evolution of species interactions across environmental gradients. Am Nat 198(1):158–176. https://doi.org/10.1086/714589
doi: 10.1086/714589
pubmed: 34143715
Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142(4):1427–1441. https://doi.org/10.1104/pp.106.089169
doi: 10.1104/pp.106.089169
pubmed: 17041024
pmcid: 1676067
Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144(2):1029–1038. https://doi.org/10.1104/pp.106.089151
doi: 10.1104/pp.106.089151
pubmed: 17434995
pmcid: 1914202
Quezada GDÁ, Siddra I, Riffat M (2024) Genetic transformation in plants: methods and applications. In: Siddra I, Imran UH, Hayssam MA (eds) Trends in plant biotechnology. Singapore: Springer Nature. pp. 23–55
Rajkumari N, Swapna A, Soni KB, Anith KN, Viji MM, Kiran AG (2021) Silver nanoparticles for biolistic transformation in Nicotiana tabacum L. Biotech. 11(12): 497. https://doi.org/10.1007/s13205-021-03043-9
Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Sunhee Oh, Yun J et al (2022) Agrobacterium expressing a type III secretion system delivers pseudomonas effectors into plant cells to enhance transformation. Nat Commun 13:2581. https://doi.org/10.1038/s41467-022-30180-3
doi: 10.1038/s41467-022-30180-3
pubmed: 35546550
pmcid: 9095702
Ramkumar TR, Sangram KL, Sagar SA, Kailash CB (2020) A short history and perspectives on plant genetic transformation. In: Sachin R, Hong L (eds) Biolistic DNA delivery in plants: methods and protocols. New York: Springer US. pp. 39–68
Reed KM, Bastiaan ORB (2021) Protoplast regeneration and its use in new plant breeding technologies. Front Genome Ed. https://doi.org/10.3389/fgeed.2021.734951
Routier C, Vallan L, Daguerre Y, Juvany M, Istif E, Mantione D, Brochon C et al (2023) Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants’ CO2 uptake. ACS Nano 17(4):3430–3441. https://doi.org/10.1021/acsnano.2c09255
doi: 10.1021/acsnano.2c09255
pubmed: 36796108
pmcid: 9979637
Ruf S, Ralph B (2021) Plastid transformation in tomato: a vegetable crop and model species. In: Pal M (eds) Chloroplast biotechnology: methods and protocols, 2nd edn. Totowa: Humana Press Inc. pp. 217–28
Ruhlman TA (2021) Biolistic plastid transformation in lettuce (Lactuca sativa) for oral delivery of biopharmaceuticals. In: Pal M (eds) Chloroplast biotechnology: methods and protocols. New York: Springer US. pp. 267–81
Saeger De, Jonas JP, Chung HS, Hernalsteens J-P, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S (2021) Agrobacterium strains and strain improvement: present and outlook. Biotechnol Adv 53:107677. https://doi.org/10.1016/j.biotechadv.2020.107677
doi: 10.1016/j.biotechadv.2020.107677
pubmed: 33290822
Samuelsen AB (2000) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 71(1–2):1–21. https://doi.org/10.1016/S0378-8741(00)00212-9
doi: 10.1016/S0378-8741(00)00212-9
pubmed: 10904143
pmcid: 7142308
Sandhya D, Jogam P, Venkatapuram AK, Savitikadi P, Peddaboina V, Allini VR, Abbagani S (2022) Highly efficient agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi J Biol Sci 29(6):103292. https://doi.org/10.1016/j.sjbs.2022.103292
doi: 10.1016/j.sjbs.2022.103292
pubmed: 35540178
pmcid: 9079358
Sant’Ana RRA, Clarissa AC, Rubens ON, Sarah ZAT (2020) PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Genes 11(9):1029. https://doi.org/10.3390/genes11091029
doi: 10.3390/genes11091029
pubmed: 32887261
pmcid: 7564243
Santarém ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17(10):752–759. https://doi.org/10.1007/s002990050478
doi: 10.1007/s002990050478
pubmed: 30736587
Sharada MS, Kumari A, Pandey AK, Sharma S, Sharma P, Sreelakshmi Y, Sharma R (2017) Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell Tissue Organ Cult 129(2):299–312. https://doi.org/10.1007/s11240-017-1178-7
doi: 10.1007/s11240-017-1178-7
Shires ME, Florez SL, Lai TS, Curtis WR (2017) Inducible somatic embryogenesis in theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotech Lett 39(11):1747–1755. https://doi.org/10.1007/s10529-017-2404-4
doi: 10.1007/s10529-017-2404-4
Shruti AT, Susmita S (2024) Methods of genetic transformation: major emphasis to crop plants. J Microbiol Biotechnol Food Sci. 13(4): e10276–e10276. https://doi.org/10.55251/jmbfs.10276
Si H, Li R, Zhang Q, Liu L (2022) Complete chloroplast genome of Plantago asiatica and its phylogenetic position in plantaginaceae. Mitochondrial DNA Part B 7(5):819–821. https://doi.org/10.1080/23802359.2022.2073838
doi: 10.1080/23802359.2022.2073838
pubmed: 35573592
pmcid: 9103697
Silva TN, Jason BT, Jeff D, Seung YR, Jenny CM (2022) Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J Exp Bot. 73(3): 646–64. https://doi.org/10.1093/jxb/erab450
Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130
pubmed: 13486467
Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D (2016) Transcriptome profiling of beach morning glory (Ipomoea imperati) under salinity and its comparative analysis with sweetpotato. PLoS ONE 11(2):e0147398. https://doi.org/10.1371/journal.pone.0147398
doi: 10.1371/journal.pone.0147398
pubmed: 26848754
pmcid: 4743971
Squire HJ, Tomatz S, Voke E, González-Grandío E, Landry M (2023) The emerging role of nanotechnology in plant genetic engineering. Nat Rev Bioeng 1(5):314–328. https://doi.org/10.1038/s44222-023-00037-5
doi: 10.1038/s44222-023-00037-5
Steward FC, Pollard JK (1958) 14C-proline and hydroxyproline in the protein metabolism of plants; an episode in the relation of metabolism to cell growth and morphogenesis. Nature 182(4639):828–832. https://doi.org/10.1038/182828a0
doi: 10.1038/182828a0
pubmed: 13590133
Steward FC, Mapes MO, Mears K (1958a) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell. Am J Bot 45(10):705–708. https://doi.org/10.1002/j.1537-2197.1958.tb10599.x
doi: 10.1002/j.1537-2197.1958.tb10599.x
Steward FC, Mapes MO, Smith J (1958b) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45(9):693–703. https://doi.org/10.2307/2439507
doi: 10.2307/2439507
Su W, Mingyue Xu, Radani Y, Yang L (2023) Technological development and application of plant genetic transformation. Int J Mol Sci 24(13):10646. https://doi.org/10.3390/ijms241310646
doi: 10.3390/ijms241310646
pubmed: 37445824
pmcid: 10341552
Subburaj S, Chung SJ, Lee C, Ryu S-M, Kim DH, Kim J-S, Bae S, Lee G-J (2016) Site-directed mutagenesis in petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35(7):1535–1544. https://doi.org/10.1007/s00299-016-1937-7
doi: 10.1007/s00299-016-1937-7
pubmed: 26825596
Sugiura C, Sugita M (2004) Plastid transformation reveals that moss tRNA(Arg)-CCG is not essential for plastid function. Plant J Cell Mol Biol 40(2):314–321. https://doi.org/10.1111/j.1365-313X.2004.02202.x
doi: 10.1111/j.1365-313X.2004.02202.x
Szabala BM, Swiecicka M, Lyznik LA (2024) Microinjection of the CRISPR/Cas9 editing system through the germ pore of a wheat microspore induces mutations in the target Ms2 gene. Mol Biol Rep 51(1):706. https://doi.org/10.1007/s11033-024-09644-w
doi: 10.1007/s11033-024-09644-w
pubmed: 38824203
Tan RF, Jun T, Ling L (2007) Genetic transformation of ipomoea purpurea mediated by agrobacterium rhizogenes
Tanwar N, Binod KM, James ER, David MC, Kailash CB, Sangram KL (2024) Chloroplast transformation in new cultivars of tomato through particle bombardment. Biotech. 14(4): 120. https://doi.org/10.1007/s13205-024-03954-3
Tawfik E, Hammad I, Bakry A (2022) Production of transgenic allium cepa by nanoparticles to resist aspergillus niger infection. Mol Biol Rep 49(3):1783–1790. https://doi.org/10.1007/s11033-021-06988-5
doi: 10.1007/s11033-021-06988-5
pubmed: 34837626
Thirugnanasambandam PP, Nam VH, Robert JH (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00616
Tonnies J, Mueth NA, Gorjifard S, Chu J, Queitsch C (2023) Scalable transfection of maize mesophyll protoplasts. Jove J vis Exp 196:e64991. https://doi.org/10.3791/64991
doi: 10.3791/64991
Torregrosa L, Iocco P, Thomas MR (2002) Influence of agrobacterium strain, culture medium, and cultivar on the transformation efficiency of vitis vinifera L. Am J Enol Vitic 53(3):183–190. https://doi.org/10.5344/ajev.2002.53.3.183
doi: 10.5344/ajev.2002.53.3.183
Tripathi PK, Ayzenshtat D, Kumar M, Zemach H, Yedidia I, Bocobza SE (2023) An efficient and reproducible agrobacterium-mediated genetic transformation method for the ornamental monocotyledonous plant ornithogalum dubium houtt. Plant Growth Regul 101(1):201–214. https://doi.org/10.1007/s10725-023-01013-0
doi: 10.1007/s10725-023-01013-0
Van Larebeke N, Engler G, Holsters M, Van Den Elsacker SV, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252(5479):169–170. https://doi.org/10.1038/252169a0
doi: 10.1038/252169a0
pubmed: 4419109
Vasudevan V, Siva R, Krishnan V, Manickavasagam M (2020) Polyamines, sonication and vacuum infiltration enhances the Agrobacterium-mediated transformation in watermelon (Citrullus lanatus thunb.). S Afr J Bot 128:333–338. https://doi.org/10.1016/j.sajb.2019.11.031
doi: 10.1016/j.sajb.2019.11.031
Vogrinčič V, Damijana K, Jana M (2024) Phytosulfokine alpha enhances regeneration of transformed and untransformed protoplasts of brassica oleracea. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1379618
Wałpuski G, Kozioł Ł, Gasulla F, Zaborski P, Zienkiewicz M (2024) Stable transformation of the unicellular lichenic green alga coccomyxa solorinae-saccatae via electroporation. Symbiosis 93(1):115–123. https://doi.org/10.1007/s13199-024-00985-5
doi: 10.1007/s13199-024-00985-5
Wang M, Soyano T, Machida S, Yang J-Y, Jung C, Chua N-H, Adam Yuan Y (2011) Molecular insights into plant cell proliferation disturbance by agrobacterium protein 6b. Genes Dev 25(1):64–76. https://doi.org/10.1101/gad.1985511
doi: 10.1101/gad.1985511
pubmed: 21156810
pmcid: 3012937
Wang Z, Liu H, Li L, Li Q, Wang X, Jiang Y, Yuqin Fu, Lü C (2017) Ultrasonic-assisted mesoporous silica nanoparticle-mediated exogenous gene stable expression in tobacco. Chem Res Chin Univ 33(6):912–916. https://doi.org/10.1007/s40242-017-7240-5
doi: 10.1007/s40242-017-7240-5
Wang K, Huilan Z, Morgan M (2020) Biolistic DNA delivery in maize immature embryos. In: Rustgi S, Luo H (eds) Biolistic DNA delivery in plants: methods and protocols. Totowa: Humana Press Inc. pp. 177–95
Wang Ke, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y et al (2022) The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8(2):110–117. https://doi.org/10.1038/s41477-021-01085-8
doi: 10.1038/s41477-021-01085-8
pubmed: 35027699
Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M (2017) CRISPR/Cas9-mediated mutagenesis of the Dihydroflavonol-4-Reductase-B (DFR-B) locus in the Japanese morning glory ipomoea (Pharbitis) nil. Sci Rep 7(1):10028. https://doi.org/10.1038/s41598-017-10715-1
doi: 10.1038/s41598-017-10715-1
pubmed: 28855641
pmcid: 5577235
Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164. https://doi.org/10.1038/nbt.3389
doi: 10.1038/nbt.3389
pubmed: 26479191
Wu Y, Ling C, Chunmei J, Letian X, Jiang Z (2021) Plastid transformation in poplar: a model for perennial trees. In: Maliga P (eds) Chloroplast biotechnology: methods and protocols, 2nd edn. Totowa: Humana Press Inc. pp.257–65
Wu K, Changbin Xu, Li T, Ma H, Gong J, Li X, Sun X, Xiaoli Hu (2023) Application of nanotechnology in plant genetic engineering. Int J Mol Sci 24(19):14836. https://doi.org/10.3390/ijms241914836
doi: 10.3390/ijms241914836
pubmed: 37834283
pmcid: 10573821
Yan T, Hou Q, Wei X, Qi Y, Aqing Pu, Suowei Wu, An X, Wan X (2023) Promoting genotype-independent plant transformation by manipulating developmental regulatory genes and/or using nanoparticles. Plant Cell Rep 42(9):1395–1417. https://doi.org/10.1007/s00299-023-03037-2
doi: 10.1007/s00299-023-03037-2
pubmed: 37311877
pmcid: 10447291
Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 26:102336. https://doi.org/10.1016/j.eti.2022.102336
doi: 10.1016/j.eti.2022.102336
Yu J, Deng S, Huang H, Mo J, Zeng-Fu Xu, Wang Yi (2023) Exploring the potential applications of the noninvasive reporter gene RUBY in plant genetic transformation. Forests 14(3):637. https://doi.org/10.3390/f14030637
doi: 10.3390/f14030637
Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7(6):379–384. https://doi.org/10.1007/BF00269517
doi: 10.1007/BF00269517
pubmed: 24240249
Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) Agrobacterium-mediated transformation of arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646. https://doi.org/10.1038/nprot.2006.97
doi: 10.1038/nprot.2006.97
pubmed: 17406292
Zhang XH, Xue-Jing Z, Bo L, Fei-Fei L, Pei-Xuan L, Dong-Hong M (2013) Factors optimization of pollen electroporation transformation and identification of transgenic wheat. 46(12): 2403–11. https://doi.org/10.3864/j.issn.0578-1752.2013.12.001
Zhang Yu, Zhang Q, Chen Q-J (2020) Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. Sci China Life Sci 63(10):1491–1498. https://doi.org/10.1007/s11427-020-1685-9
doi: 10.1007/s11427-020-1685-9
pubmed: 32279281
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S et al (2022) Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat Nanotechnol 17(2):197–205. https://doi.org/10.1038/s41565-021-01018-8
doi: 10.1038/s41565-021-01018-8
pubmed: 34811553
Zhang M, Ma Xu, Jin Ge, Han D, Xue J, Yunpeng Du, Chen X, Yang F, Zhao C, Zhang X (2023) A modified method for transient transformation via pollen magnetofection in Lilium germplasm. Int J Mol Sci 24(20):15304. https://doi.org/10.3390/ijms242015304
doi: 10.3390/ijms242015304
pubmed: 37894985
pmcid: 10607007
Zhang C, Tang Y, Tang S, Chen L, Li T, Yuan H, Yujun Xu et al (2024a) An inducible CRISPR activation tool for accelerating plant regeneration. Plant Commun Focus Issue Wheat Biol 5(5):100823. https://doi.org/10.1016/j.xplc.2024.100823
doi: 10.1016/j.xplc.2024.100823
Zhang Y, Patankar H, Aljedaani F, Blilou I (2024b) A framework for date palm (Phoenix dactylifera L.) tissue regeneration and stable transformation. Physiol Plant 176(1):e14189. https://doi.org/10.1111/ppl.14189
doi: 10.1111/ppl.14189
pubmed: 38342489
Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui Bo, Cui J et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964. https://doi.org/10.1038/s41477-017-0063-z
doi: 10.1038/s41477-017-0063-z
pubmed: 29180813
Zhao H, Yaqi J, Yanting C, Yucheng W (2020) Improving T-DNA transfer to tamarix hispida by adding chemical compounds during agrobacterium tumefaciens culture. Front Plant Sci. https://doi.org/10.3389/fpls.2020.501358