Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.
Artificial intelligence
CCTA
Coronary computed tomography angiography
Deep learning
Image reconstruction
Journal
La Radiologia medica
ISSN: 1826-6983
Titre abrégé: Radiol Med
Pays: Italy
ID NLM: 0177625
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
14
07
2022
accepted:
03
02
2023
medline:
24
4
2023
pubmed:
28
2
2023
entrez:
27
2
2023
Statut:
ppublish
Résumé
To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V). Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR_L, DLIR_M, and DLIR_H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) determined objective image quality. Subjective image quality was assessed with a 4-point Likert scale. Concordance between reconstruction algorithms was assessed by Pearson correlation coefficient. DLIR algorithm did not impact vascular attenuation (P ≥ 0.374). DLIR_H showed the lowest noise, comparable with ASiR-V 100% (P = 1) and significantly lower than other reconstructions (P ≤ 0.021). DLIR_H achieved the highest objective quality, with SNR and CNR comparable to ASiR-V 100% (P = 0.139 and 0.075, respectively). DLIR_M obtained comparable objective image quality with ASiR-V 80% and 90% (P ≥ 0.281), while achieved the highest subjective image quality (4, IQR: 4-4; P ≤ 0.001). DLIR and ASiR-V datasets returned a very strong correlation in the assessment of CAD (r = 0.874, P = 0.001). DLIR_M significantly improves CCTA image quality and has very strong correlation with routinely applied ASiR-V 50% dataset in the diagnosis of CAD.
Identifiants
pubmed: 36847992
doi: 10.1007/s11547-023-01607-8
pii: 10.1007/s11547-023-01607-8
pmc: PMC10119038
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
434-444Informations de copyright
© 2023. The Author(s).
Références
Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336. https://doi.org/10.1056/NEJMoa0806576
doi: 10.1056/NEJMoa0806576
pubmed: 19038879
SCOT-HEART Investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385:2383–2391. https://doi.org/10.1016/S0140-6736(15)60291-4
doi: 10.1016/S0140-6736(15)60291-4
De Santis D, Eid M, De Cecco CN et al (2018) Dual-energy computed tomography in cardiothoracic vascular imaging. Radiol Clin North Am 56:521–534. https://doi.org/10.1016/j.rcl.2018.03.010
doi: 10.1016/j.rcl.2018.03.010
pubmed: 29936945
Chow BJW, Small G, Yam Y et al (2011) Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging 4:463–472. https://doi.org/10.1161/CIRCIMAGING.111.964155
doi: 10.1161/CIRCIMAGING.111.964155
pubmed: 21730027
Huda W, Schoepf UJ, Abro JA et al (2011) Radiation-related cancer risks in a clinical patient population undergoing cardiac CT. AJR Am J Roentgenol 196:W159-165. https://doi.org/10.2214/AJR.10.4981
doi: 10.2214/AJR.10.4981
pubmed: 21257857
LaBounty TM (2020) Reducing radiation dose in coronary computed tomography angiography: we are not there yet. JACC Cardiovasc Imaging 13:435–436. https://doi.org/10.1016/j.jcmg.2019.04.017
doi: 10.1016/j.jcmg.2019.04.017
pubmed: 31202769
Stocker TJ, Leipsic J, Hadamitzky M et al (2020) Application of low tube potentials in CCTA: results from the PROTECTION VI study. JACC Cardiovasc Imaging 13:425–434. https://doi.org/10.1016/j.jcmg.2019.03.030
doi: 10.1016/j.jcmg.2019.03.030
pubmed: 31202772
Leipsic J, Labounty TM, Heilbron B et al (2010) Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol 195:649–654. https://doi.org/10.2214/AJR.10.4285
doi: 10.2214/AJR.10.4285
pubmed: 20729442
Caruso D, De Santis D, Biondi T et al (2019) Half-dose coronary artery calcium scoring: impact of iterative reconstruction. J Thorac Imaging 34:18–25. https://doi.org/10.1097/RTI.0000000000000340
doi: 10.1097/RTI.0000000000000340
pubmed: 30036296
Greffier J, Frandon J, Larbi A et al (2020) CT iterative reconstruction algorithms: a task-based image quality assessment. Eur Radiol 30:487–500. https://doi.org/10.1007/s00330-019-06359-6
doi: 10.1007/s00330-019-06359-6
pubmed: 31359122
van Assen M, Muscogiuri G, Caruso D et al (2020) Artificial intelligence in cardiac radiology. Radiol Med 125:1186–1199. https://doi.org/10.1007/s11547-020-01277-w
doi: 10.1007/s11547-020-01277-w
pubmed: 32946002
Boedeker K (2018) AiCE Deep Learning Reconstruction: bringing the power of Ultra-High Resolution CT to routine imaging. https://www.semanticscholar.org/paper/AiCE-Deep-Learning-Reconstruction%3A-Bringing-the-of-Boedeker/26b40898462b2d759cf7321516edea03d3329e5e . Accessed 22 May 2022
Hsieh J, Liu E, Nett B et al (2019) A new era of image reconstruction: TrueFidelity
Schicchi N, Fogante M, Palumbo P et al (2020) The sub-millisievert era in CTCA: the technical basis of the new radiation dose approach. Radiol Med 125:1024–1039. https://doi.org/10.1007/s11547-020-01280-1
doi: 10.1007/s11547-020-01280-1
pubmed: 32930945
Grassi R, Miele V, Giovagnoni A (2019) Artificial intelligence: a challenge for third millennium radiologist. Radiol Med 124:241–242. https://doi.org/10.1007/s11547-019-00990-5
doi: 10.1007/s11547-019-00990-5
pubmed: 30707375
Marano R, Rovere G, Savino G et al (2020) CCTA in the diagnosis of coronary artery disease. Radiol Med 125:1102–1113. https://doi.org/10.1007/s11547-020-01283-y
doi: 10.1007/s11547-020-01283-y
pubmed: 32964325
Benz DC, Benetos G, Rampidis G et al (2020) Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy. J Cardiovasc Comput Tomogr 14:444–451. https://doi.org/10.1016/j.jcct.2020.01.002
doi: 10.1016/j.jcct.2020.01.002
pubmed: 31974008
Benz DC, Ersözlü S, Mojon FLA et al (2022) Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography. Eur Radiol 32:2620–2628. https://doi.org/10.1007/s00330-021-08367-x
doi: 10.1007/s00330-021-08367-x
pubmed: 34792635
Li W, Diao K, Wen Y et al (2022) High-strength deep learning image reconstruction in coronary CT angiography at 70-kVp tube voltage significantly improves image quality and reduces both radiation and contrast doses. Eur Radiol 32:2912–2920. https://doi.org/10.1007/s00330-021-08424-5
doi: 10.1007/s00330-021-08424-5
pubmed: 35059803
Conte E, Mushtaq S, Pontone G et al (2020) Plaque quantification by coronary computed tomography angiography using intravascular ultrasound as a reference standard: a comparison between standard and last generation computed tomography scanners. Eur Heart J Cardiovasc Imaging 21:191–201. https://doi.org/10.1093/ehjci/jez089
doi: 10.1093/ehjci/jez089
pubmed: 31093656
Leipsic J, Abbara S, Achenbach S et al (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:342–358. https://doi.org/10.1016/j.jcct.2014.07.003
doi: 10.1016/j.jcct.2014.07.003
pubmed: 25301040
Pizzi C, Xhyheri B, Costa GM et al (2016) Nonobstructive versus obstructive coronary artery disease in acute coronary syndrome: a meta-analysis. J Am Heart Assoc 5:e004185. https://doi.org/10.1161/JAHA.116.004185
doi: 10.1161/JAHA.116.004185
pubmed: 27986756
pmcid: 5210396
Willemink MJ, Noël PB (2019) The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 29:2185–2195. https://doi.org/10.1007/s00330-018-5810-7
doi: 10.1007/s00330-018-5810-7
pubmed: 30377791
Singh R, Wu W, Wang G, Kalra MK (2020) Artificial intelligence in image reconstruction: the change is here. Phys Med 79:113–125. https://doi.org/10.1016/j.ejmp.2020.11.012
doi: 10.1016/j.ejmp.2020.11.012
pubmed: 33246273
Tatsugami F, Higaki T, Nakamura Y et al (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29:5322–5329. https://doi.org/10.1007/s00330-019-06183-y
doi: 10.1007/s00330-019-06183-y
pubmed: 30963270
Heinrich A, Streckenbach F, Beller E et al (2021) Deep learning-based image reconstruction for CT angiography of the aorta. Diagnostics 11:2037. https://doi.org/10.3390/diagnostics11112037
doi: 10.3390/diagnostics11112037
pubmed: 34829383
pmcid: 8622129
Liu P, Wang M, Wang Y et al (2020) Impact of deep learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction: a prospective study. Acad Radiol 27:1241–1248. https://doi.org/10.1016/j.acra.2019.11.010
doi: 10.1016/j.acra.2019.11.010
pubmed: 31864809
Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171. https://doi.org/10.1007/s00330-019-06170-3
doi: 10.1007/s00330-019-06170-3
pubmed: 30976831
Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215:50–57. https://doi.org/10.2214/AJR.19.22332
doi: 10.2214/AJR.19.22332
pubmed: 32286872
Shin YJ, Chang W, Ye JC et al (2020) Low-a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 21:356–364. https://doi.org/10.3348/kjr.2019.0413
doi: 10.3348/kjr.2019.0413
pubmed: 32090528
pmcid: 7039719
Singh R, Digumarthy SR, Muse VV et al (2020) Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 214:566–573. https://doi.org/10.2214/AJR.19.21809
doi: 10.2214/AJR.19.21809
pubmed: 31967501
Parakh A, Cao J, Pierce TT et al (2021) Sinogram-based deep learning image reconstruction technique in abdominal CT: image quality considerations. Eur Radiol 31:8342–8353. https://doi.org/10.1007/s00330-021-07952-4
doi: 10.1007/s00330-021-07952-4
pubmed: 33893535
Kim JH, Yoon HJ, Lee E et al (2021) Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol 22:131–138. https://doi.org/10.3348/kjr.2020.0116
doi: 10.3348/kjr.2020.0116
pubmed: 32729277
Jiang B, Li N, Shi X et al (2022) Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT. Radiology 303:202–212. https://doi.org/10.1148/radiol.210551
doi: 10.1148/radiol.210551
pubmed: 35040674
Wang H, Li L-L, Shang J et al (2022) Application of deep learning image reconstruction in low-dose chest CT scan. Br J Radiol 95:20210380. https://doi.org/10.1259/bjr.20210380
doi: 10.1259/bjr.20210380
pubmed: 35084210
Kim I, Kang H, Yoon HJ et al (2021) Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology 63:905–912. https://doi.org/10.1007/s00234-020-02574-x
doi: 10.1007/s00234-020-02574-x
pubmed: 33037503
Alagic Z, Diaz Cardenas J, Halldorsson K et al (2022) Deep learning versus iterative image reconstruction algorithm for head CT in trauma. Emerg Radiol 29:339–352. https://doi.org/10.1007/s10140-021-02012-2
doi: 10.1007/s10140-021-02012-2
pubmed: 34984574
pmcid: 8917108
Greffier J, Hamard A, Pereira F et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30:3951–3959. https://doi.org/10.1007/s00330-020-06724-w
doi: 10.1007/s00330-020-06724-w
pubmed: 32100091