Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
03 2023
Historique:
received: 25 05 2022
accepted: 26 01 2023
pubmed: 7 3 2023
medline: 25 3 2023
entrez: 6 3 2023
Statut: ppublish

Résumé

Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10

Identifiants

pubmed: 36879130
doi: 10.1038/s41591-023-02238-2
pii: 10.1038/s41591-023-02238-2
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

667-678

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS109358
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

White, T., Su, S., Schmidt, M., Kao, C. Y. & Sapiro, G. The development of gyrification in childhood and adolescence. Brain Cogn. 72, 36–45 (2010).
pubmed: 19942335 doi: 10.1016/j.bandc.2009.10.009
Juric-Sekhar, G. & Hevner, R. F. Malformations of cerebral cortex development: molecules and mechanisms. Annu. Rev. Pathol. 14, 293–318 (2019).
pubmed: 30677308 pmcid: 6938687 doi: 10.1146/annurev-pathmechdis-012418-012927
Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).
pubmed: 19879845 pmcid: 2772834 doi: 10.1016/j.cell.2009.10.004
Borrell, V. & Marin, O. Meninges control tangential migration of hem-derived Cajal–Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9, 1284–1293 (2006).
pubmed: 16964252 doi: 10.1038/nn1764
Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in adults. J. Neurosurg. 118, 222–231 (2013).
pubmed: 23140149 doi: 10.3171/2012.10.JNS12548
Mustansir, F., Bashir, S. & Darbar, A. Management of arachnoid cysts: a comprehensive review. Cureus 10, e2458 (2018).
pubmed: 29888162 pmcid: 5991924
De Keersmaecker, B. et al. Outcome of 12 antenatally diagnosed fetal arachnoid cysts: case series and review of the literature. Eur. J. Paediatr. Neurol. 19, 114–121 (2015).
pubmed: 25599983 doi: 10.1016/j.ejpn.2014.12.008
Katzman, G. L., Dagher, A. P. & Patronas, N. J. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. J. Am. Med. Assoc. 282, 36–39 (1999).
doi: 10.1001/jama.282.1.36
Hayes, M. J., TerMaath, S. C., Crook, T. R. & Killeffer, J. A. A review on the effectiveness of surgical intervention for symptomatic intracranial arachnoid cysts in adults. World Neurosurg. 123, e259–e272 (2019).
pubmed: 30496927 doi: 10.1016/j.wneu.2018.11.149
Jafrani, R., Raskin, J. S., Kaufman, A. & Lam, S. Intracranial arachnoid cysts: pediatric neurosurgery update. Surg. Neurol. Int. 10, 15 (2019).
pubmed: 30815323 pmcid: 6383341 doi: 10.4103/sni.sni_320_18
Choi, J. U. & Kim, D. S. Pathogenesis of arachnoid cyst: congenital or traumatic? Pediatr. Neurosurg. 29, 260–266 (1998).
pubmed: 9917544 doi: 10.1159/000028733
Starkman, S. P., Brown, T. C. & Linell, E. A. Cerebral arachnoid cysts. J. Neuropathol. Exp. Neurol. 17, 484–500 (1958).
pubmed: 13564260 doi: 10.1097/00005072-195807000-00009
Zeegers, M. et al. Radiological findings in autistic and developmentally delayed children. Brain Dev. 28, 495–499 (2006).
pubmed: 16616445 doi: 10.1016/j.braindev.2006.02.006
Nikolic, I. et al. The association of arachnoid cysts and focal epilepsy: hospital based case control study. Clin. Neurol. Neurosurg. 159, 39–41 (2017).
pubmed: 28527977 doi: 10.1016/j.clineuro.2017.05.014
Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in children. J. Neurosurg. Pediatr. 5, 578–585 (2010).
pubmed: 20515330 doi: 10.3171/2010.2.PEDS09464
Wiener, S. N., Pearlstein, A. E. & Eiber, A. MR imaging of intracranial arachnoid cysts. J. Comput. Assist. Tomogr. 11, 236–241 (1987).
pubmed: 3819120 doi: 10.1097/00004728-198703000-00007
Gosalakkal, J. A. Intracranial arachnoid cysts in children: a review of pathogenesis, clinical features, and management. Pediatr. Neurol. 26, 93–98 (2002).
pubmed: 11897472 doi: 10.1016/S0887-8994(01)00329-0
Hall, S. et al. Clinical and radiological outcomes following surgical treatment for intra-cranial arachnoid cysts. Clin. Neurol. Neurosurg. 177, 42–46 (2019).
pubmed: 30599313 doi: 10.1016/j.clineuro.2018.12.018
Cilluffo, J. M., Gomez, M. R., Reese, D. F., Onofrio, B. M. & Miller, R. H. Idiopathic (“congenital”) spinal arachnoid diverticula. Clinical diagnosis and surgical results. Mayo Clin. Proc. 56, 93–101 (1981).
pubmed: 6780735
Zafeiriou, D. I. & Batzios, S. P. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. AJNR Am. J. Neuroradiol. 34, 5–13 (2013).
pubmed: 22790241 pmcid: 7966323 doi: 10.3174/ajnr.A2832
Qureshi, H. M. et al. Familial and syndromic forms of arachnoid cyst implicate genetic factors in disease pathogenesis. Cereb. Cortex 18, bhac257 (2022).
Furey, C. G. et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 99, 302–314.e4 (2018).
pubmed: 29983323 pmcid: 7839075 doi: 10.1016/j.neuron.2018.06.019
Jin, S. C. et al. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat. Med. 26, 1754–1765 (2020).
pubmed: 33077954 pmcid: 7871900 doi: 10.1038/s41591-020-1090-2
Bilgüvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).
pubmed: 20729831 pmcid: 3129007 doi: 10.1038/nature09327
Barak, T. et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590–594 (2011).
pubmed: 21572413 pmcid: 3329933 doi: 10.1038/ng.836
Mishra-Gorur, K. et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 84, 1226–1239 (2014).
pubmed: 25521378 pmcid: 5024344 doi: 10.1016/j.neuron.2014.12.014
Kundishora, A. J. et al. DIAPH1 variants in non-East Asian patients with sporadic moyamoya disease. JAMA Neurol. 78, 993–1003 (2021).
pubmed: 34125151 pmcid: 8204259 doi: 10.1001/jamaneurol.2021.1681
De Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).
pubmed: 23033978 doi: 10.1056/NEJMoa1206524
Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).
pubmed: 22495311 pmcid: 3613847 doi: 10.1038/nature11011
Timberlake, A. T. et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 5, e20125 (2016).
pubmed: 27606499 pmcid: 5045293 doi: 10.7554/eLife.20125
Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588 (2015).
pubmed: 25961944 pmcid: 4449286 doi: 10.1038/ng.3303
Shi, C. et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112, 4699–4711 (2008).
pubmed: 18799727 pmcid: 2597137 doi: 10.1182/blood-2008-01-137018
Li, X. et al. MEK is a key regulator of gliogenesis in the developing brain. Neuron 75, 1035–1050 (2012).
pubmed: 22998872 pmcid: 3483643 doi: 10.1016/j.neuron.2012.08.031
Chakraborty, R. et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124, 3007–3015 (2014).
pubmed: 25202140 pmcid: 4224195 doi: 10.1182/blood-2014-05-577825
Aoidi, R. et al. Mek1
pubmed: 29590634 pmcid: 5897723 doi: 10.1242/dmm.031278
Nie, Z. et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20, 8879–8888 (2000).
pubmed: 11073988 pmcid: 86543 doi: 10.1128/MCB.20.23.8879-8888.2000
Tumber, A. et al. Potent and selective KDM5 inhibitor stops cellular demethylation of H3K4me3 at transcription start sites and proliferation of MM1S myeloma cells. Cell Chem. Biol. 24, 371–380 (2017).
pubmed: 28262558 pmcid: 5361737 doi: 10.1016/j.chembiol.2017.02.006
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).
pubmed: 12934013 doi: 10.1126/science.1087447
Castro Dias, M., Mapunda, J. A., Vladymyrov, M. & Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 20, 5372 (2019).
pubmed: 31671721 pmcid: 6862204 doi: 10.3390/ijms20215372
Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).
pubmed: 27924018 doi: 10.1093/nar/gkw943
Arriola, G., de Castro, P. & Verdu, A. Familial arachnoid cysts. Pediatr. Neurol. 33, 146–148 (2005).
pubmed: 16087064 doi: 10.1016/j.pediatrneurol.2005.02.008
Martinez, J. O. et al. Intracranial arachnoid cysts and epilepsy in children: should this be treated surgically? Our 29-year experience and review of the literature. Neurocirugía 33, 157–164 (2021).
doi: 10.1016/j.neucir.2021.03.003
Valencia, A. M. & Pasca, S. P. Chromatin dynamics in human brain development and disease. Trends Cell Biol. 32, 98–101 (2022).
pubmed: 34610892 doi: 10.1016/j.tcb.2021.09.001
Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).
pubmed: 28824374 pmcid: 5540894 doi: 10.3389/fnmol.2017.00243
Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).
pubmed: 19703438 doi: 10.1016/j.ydbio.2009.08.017
Bragin, E. et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–D1000 (2014).
pubmed: 24150940 doi: 10.1093/nar/gkt937
De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).
pubmed: 25363760 pmcid: 4402723 doi: 10.1038/nature13772
Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).
pubmed: 23665959 pmcid: 3706629 doi: 10.1038/nature12141
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204 pmcid: 4640607 doi: 10.1126/sciadv.1500447
Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell Neurosci. 13, 385 (2019).
pubmed: 31481879 pmcid: 6710438 doi: 10.3389/fncel.2019.00385
Jahed, Z., Shams, H., Mehrbod, M. & Mofrad, M. R. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int. Rev. Cell Mol. Biol. 310, 171–220 (2014).
pubmed: 24725427 doi: 10.1016/B978-0-12-800180-6.00005-0
Rengachary, S. S. & Watanabe, I. Ultrastructure and pathogenesis of intracranial arachnoid cysts. J. Neuropathol. Exp. Neurol. 40, 61–83 (1981).
pubmed: 7205328 doi: 10.1097/00005072-198101000-00007
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
pubmed: 31619793 doi: 10.1038/s41586-019-1654-9
Rabiei, K., Hogfeldt, M. J., Doria-Medina, R. & Tisell, M. Surgery for intracranial arachnoid cysts in children—a prospective long-term study. Childs Nerv. Syst. 32, 1257–1263 (2016).
pubmed: 27000761 doi: 10.1007/s00381-016-3064-8
Tamburrini, G., Dal Fabbro, M., & Di Rocco, C. Sylvian fissure arachnoid cysts: a survey on their diagnostic workout and practical management. Childs Nerv. Syst. 24, 593–604 (2008).
pubmed: 18305944 doi: 10.1007/s00381-008-0585-9
Schulz, M. et al. Surgical management of intracranial arachnoid cysts in pediatric patients: radiological and clinical outcome. J. Neurosurg. Pediatr. 28, 102–112 (2021).
doi: 10.3171/2020.10.PEDS20839
Sadler, B. et al. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am. J. Hum. Genet. 108, 100–114 (2021).
pubmed: 33352116 doi: 10.1016/j.ajhg.2020.12.001
Duran, D. et al. Mutations in chromatin modifier and ephrin signaling genes in vein of galen malformation. Neuron 101, 429–443.e4 (2019).
pubmed: 30578106 doi: 10.1016/j.neuron.2018.11.041
Timberlake, A. T. et al. Genetic influence on neurodevelopment in nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 149, 1157–1165 (2022).
pubmed: 35286293 doi: 10.1097/PRS.0000000000008976
Retterer, K. et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704 (2016).
pubmed: 26633542 doi: 10.1038/gim.2015.148
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).
pubmed: 33568819 pmcid: 7875770 doi: 10.1038/s41586-021-03205-y
Mills, R. E. et al. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 21, 830–839 (2011).
pubmed: 21460062 pmcid: 3106316 doi: 10.1101/gr.115907.110
Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).
pubmed: 33057194 pmcid: 7116826 doi: 10.1038/s41586-020-2832-5
Ware, J. S., Samocha, K. E., Homsy, J. & Daly, M. J. Interpreting de novo variation in human disease using denovolyzeR. Curr. Protoc. Hum. Genet. 87, 7.25.1–7.25.15 (2015).
pubmed: 26439716
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).
pubmed: 20881960 pmcid: 2955183 doi: 10.1038/nature09410
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).
pubmed: 28991257 pmcid: 5675000 doi: 10.1038/ng.3970
Song, L. et al. STAB: a spatio-temporal cell atlas of the human brain. Nucleic Acids Res. 49, D1029–D1037 (2021).
pubmed: 32976581 doi: 10.1093/nar/gkaa762
Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).
pubmed: 30545855 pmcid: 6900982 doi: 10.1126/science.aat8077
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008 pmcid: 2631488 doi: 10.1186/1471-2105-9-559
Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771.e22 (2019).
pubmed: 31626773 pmcid: 8963725 doi: 10.1016/j.cell.2019.09.021
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299 pmcid: 2644678 doi: 10.1186/1471-2105-10-48
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).
pubmed: 24336805 doi: 10.1093/bioinformatics/btt703
DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59.e4 (2020).
pubmed: 32634398 pmcid: 7769050 doi: 10.1016/j.devcel.2020.06.009
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437 pmcid: 6434952 doi: 10.1038/s41586-019-0969-x
Campello, R. J. G. B., Moulavi, D. & Sander, J. in Advances in Knowledge Discovery and Data Mining (eds. Pei, J. et al.) 160–172 (Springer Berlin Heidelberg, 2013).

Auteurs

Adam J Kundishora (AJ)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Garrett Allington (G)

Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Stephen McGee (S)

GeneDx, Gaithersburg, MD, USA.

Kedous Y Mekbib (KY)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Vladimir Gainullin (V)

GeneDx, Gaithersburg, MD, USA.

Andrew T Timberlake (AT)

Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY, USA.

Carol Nelson-Williams (C)

Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

Emre Kiziltug (E)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Hannah Smith (H)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Jack Ocken (J)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

John Shohfi (J)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

August Allocco (A)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Phan Q Duy (PQ)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Aladine A Elsamadicy (AA)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Weilai Dong (W)

Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.

Shujuan Zhao (S)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.

Yung-Chun Wang (YC)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.

Hanya M Qureshi (HM)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Michael L DiLuna (ML)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Shrikant Mane (S)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
Yale Center for Genomic Analysis, Yale University, West Haven, CT, USA.

Irina R Tikhonova (IR)

School of Pharmacy, Queen's University Belfast, Belfast, UK.

Po-Ying Fu (PY)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.

Christopher Castaldi (C)

Yale Center for Genomic Analysis, Yale University, West Haven, CT, USA.

Francesc López-Giráldez (F)

Yale Center for Genomic Analysis, Yale University, West Haven, CT, USA.

James R Knight (JR)

Yale Center for Genomic Analysis, Yale University, West Haven, CT, USA.

Charuta G Furey (CG)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Bob S Carter (BS)

Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Shozeb Haider (S)

School of Pharmacy, University College London, London, UK.

Andres Moreno-De-Luca (A)

Department of Radiology, Autism and Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA.

Seth L Alper (SL)

Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.

Murat Gunel (M)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.

Francisca Millan (F)

GeneDx, Gaithersburg, MD, USA.

Richard P Lifton (RP)

Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.

Rebecca I Torene (RI)

GeneDx, Gaithersburg, MD, USA.

Sheng Chih Jin (SC)

Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.

Kristopher T Kahle (KT)

Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA. kahle.kristopher@mgh.harvard.edu.
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA. kahle.kristopher@mgh.harvard.edu.
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA. kahle.kristopher@mgh.harvard.edu.
Broad Institute of MIT and Harvard, Cambridge, MA, USA. kahle.kristopher@mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH