Multiomic analyses implicate a neurodevelopmental program in the pathogenesis of cerebral arachnoid cysts.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
25
05
2022
accepted:
26
01
2023
pubmed:
7
3
2023
medline:
25
3
2023
entrez:
6
3
2023
Statut:
ppublish
Résumé
Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10
Identifiants
pubmed: 36879130
doi: 10.1038/s41591-023-02238-2
pii: 10.1038/s41591-023-02238-2
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
667-678Subventions
Organisme : NINDS NIH HHS
ID : R01 NS109358
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
White, T., Su, S., Schmidt, M., Kao, C. Y. & Sapiro, G. The development of gyrification in childhood and adolescence. Brain Cogn. 72, 36–45 (2010).
pubmed: 19942335
doi: 10.1016/j.bandc.2009.10.009
Juric-Sekhar, G. & Hevner, R. F. Malformations of cerebral cortex development: molecules and mechanisms. Annu. Rev. Pathol. 14, 293–318 (2019).
pubmed: 30677308
pmcid: 6938687
doi: 10.1146/annurev-pathmechdis-012418-012927
Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).
pubmed: 19879845
pmcid: 2772834
doi: 10.1016/j.cell.2009.10.004
Borrell, V. & Marin, O. Meninges control tangential migration of hem-derived Cajal–Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9, 1284–1293 (2006).
pubmed: 16964252
doi: 10.1038/nn1764
Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in adults. J. Neurosurg. 118, 222–231 (2013).
pubmed: 23140149
doi: 10.3171/2012.10.JNS12548
Mustansir, F., Bashir, S. & Darbar, A. Management of arachnoid cysts: a comprehensive review. Cureus 10, e2458 (2018).
pubmed: 29888162
pmcid: 5991924
De Keersmaecker, B. et al. Outcome of 12 antenatally diagnosed fetal arachnoid cysts: case series and review of the literature. Eur. J. Paediatr. Neurol. 19, 114–121 (2015).
pubmed: 25599983
doi: 10.1016/j.ejpn.2014.12.008
Katzman, G. L., Dagher, A. P. & Patronas, N. J. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. J. Am. Med. Assoc. 282, 36–39 (1999).
doi: 10.1001/jama.282.1.36
Hayes, M. J., TerMaath, S. C., Crook, T. R. & Killeffer, J. A. A review on the effectiveness of surgical intervention for symptomatic intracranial arachnoid cysts in adults. World Neurosurg. 123, e259–e272 (2019).
pubmed: 30496927
doi: 10.1016/j.wneu.2018.11.149
Jafrani, R., Raskin, J. S., Kaufman, A. & Lam, S. Intracranial arachnoid cysts: pediatric neurosurgery update. Surg. Neurol. Int. 10, 15 (2019).
pubmed: 30815323
pmcid: 6383341
doi: 10.4103/sni.sni_320_18
Choi, J. U. & Kim, D. S. Pathogenesis of arachnoid cyst: congenital or traumatic? Pediatr. Neurosurg. 29, 260–266 (1998).
pubmed: 9917544
doi: 10.1159/000028733
Starkman, S. P., Brown, T. C. & Linell, E. A. Cerebral arachnoid cysts. J. Neuropathol. Exp. Neurol. 17, 484–500 (1958).
pubmed: 13564260
doi: 10.1097/00005072-195807000-00009
Zeegers, M. et al. Radiological findings in autistic and developmentally delayed children. Brain Dev. 28, 495–499 (2006).
pubmed: 16616445
doi: 10.1016/j.braindev.2006.02.006
Nikolic, I. et al. The association of arachnoid cysts and focal epilepsy: hospital based case control study. Clin. Neurol. Neurosurg. 159, 39–41 (2017).
pubmed: 28527977
doi: 10.1016/j.clineuro.2017.05.014
Al-Holou, W. N. et al. Prevalence and natural history of arachnoid cysts in children. J. Neurosurg. Pediatr. 5, 578–585 (2010).
pubmed: 20515330
doi: 10.3171/2010.2.PEDS09464
Wiener, S. N., Pearlstein, A. E. & Eiber, A. MR imaging of intracranial arachnoid cysts. J. Comput. Assist. Tomogr. 11, 236–241 (1987).
pubmed: 3819120
doi: 10.1097/00004728-198703000-00007
Gosalakkal, J. A. Intracranial arachnoid cysts in children: a review of pathogenesis, clinical features, and management. Pediatr. Neurol. 26, 93–98 (2002).
pubmed: 11897472
doi: 10.1016/S0887-8994(01)00329-0
Hall, S. et al. Clinical and radiological outcomes following surgical treatment for intra-cranial arachnoid cysts. Clin. Neurol. Neurosurg. 177, 42–46 (2019).
pubmed: 30599313
doi: 10.1016/j.clineuro.2018.12.018
Cilluffo, J. M., Gomez, M. R., Reese, D. F., Onofrio, B. M. & Miller, R. H. Idiopathic (“congenital”) spinal arachnoid diverticula. Clinical diagnosis and surgical results. Mayo Clin. Proc. 56, 93–101 (1981).
pubmed: 6780735
Zafeiriou, D. I. & Batzios, S. P. Brain and spinal MR imaging findings in mucopolysaccharidoses: a review. AJNR Am. J. Neuroradiol. 34, 5–13 (2013).
pubmed: 22790241
pmcid: 7966323
doi: 10.3174/ajnr.A2832
Qureshi, H. M. et al. Familial and syndromic forms of arachnoid cyst implicate genetic factors in disease pathogenesis. Cereb. Cortex 18, bhac257 (2022).
Furey, C. G. et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 99, 302–314.e4 (2018).
pubmed: 29983323
pmcid: 7839075
doi: 10.1016/j.neuron.2018.06.019
Jin, S. C. et al. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat. Med. 26, 1754–1765 (2020).
pubmed: 33077954
pmcid: 7871900
doi: 10.1038/s41591-020-1090-2
Bilgüvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).
pubmed: 20729831
pmcid: 3129007
doi: 10.1038/nature09327
Barak, T. et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590–594 (2011).
pubmed: 21572413
pmcid: 3329933
doi: 10.1038/ng.836
Mishra-Gorur, K. et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 84, 1226–1239 (2014).
pubmed: 25521378
pmcid: 5024344
doi: 10.1016/j.neuron.2014.12.014
Kundishora, A. J. et al. DIAPH1 variants in non-East Asian patients with sporadic moyamoya disease. JAMA Neurol. 78, 993–1003 (2021).
pubmed: 34125151
pmcid: 8204259
doi: 10.1001/jamaneurol.2021.1681
De Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).
pubmed: 23033978
doi: 10.1056/NEJMoa1206524
Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).
pubmed: 22495311
pmcid: 3613847
doi: 10.1038/nature11011
Timberlake, A. T. et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 5, e20125 (2016).
pubmed: 27606499
pmcid: 5045293
doi: 10.7554/eLife.20125
Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588 (2015).
pubmed: 25961944
pmcid: 4449286
doi: 10.1038/ng.3303
Shi, C. et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112, 4699–4711 (2008).
pubmed: 18799727
pmcid: 2597137
doi: 10.1182/blood-2008-01-137018
Li, X. et al. MEK is a key regulator of gliogenesis in the developing brain. Neuron 75, 1035–1050 (2012).
pubmed: 22998872
pmcid: 3483643
doi: 10.1016/j.neuron.2012.08.031
Chakraborty, R. et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124, 3007–3015 (2014).
pubmed: 25202140
pmcid: 4224195
doi: 10.1182/blood-2014-05-577825
Aoidi, R. et al. Mek1
pubmed: 29590634
pmcid: 5897723
doi: 10.1242/dmm.031278
Nie, Z. et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20, 8879–8888 (2000).
pubmed: 11073988
pmcid: 86543
doi: 10.1128/MCB.20.23.8879-8888.2000
Tumber, A. et al. Potent and selective KDM5 inhibitor stops cellular demethylation of H3K4me3 at transcription start sites and proliferation of MM1S myeloma cells. Cell Chem. Biol. 24, 371–380 (2017).
pubmed: 28262558
pmcid: 5361737
doi: 10.1016/j.chembiol.2017.02.006
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).
pubmed: 12934013
doi: 10.1126/science.1087447
Castro Dias, M., Mapunda, J. A., Vladymyrov, M. & Engelhardt, B. Structure and junctional complexes of endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 20, 5372 (2019).
pubmed: 31671721
pmcid: 6862204
doi: 10.3390/ijms20215372
Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017).
pubmed: 27924018
doi: 10.1093/nar/gkw943
Arriola, G., de Castro, P. & Verdu, A. Familial arachnoid cysts. Pediatr. Neurol. 33, 146–148 (2005).
pubmed: 16087064
doi: 10.1016/j.pediatrneurol.2005.02.008
Martinez, J. O. et al. Intracranial arachnoid cysts and epilepsy in children: should this be treated surgically? Our 29-year experience and review of the literature. Neurocirugía 33, 157–164 (2021).
doi: 10.1016/j.neucir.2021.03.003
Valencia, A. M. & Pasca, S. P. Chromatin dynamics in human brain development and disease. Trends Cell Biol. 32, 98–101 (2022).
pubmed: 34610892
doi: 10.1016/j.tcb.2021.09.001
Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).
pubmed: 28824374
pmcid: 5540894
doi: 10.3389/fnmol.2017.00243
Eissenberg, J. C. & Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249 (2010).
pubmed: 19703438
doi: 10.1016/j.ydbio.2009.08.017
Bragin, E. et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–D1000 (2014).
pubmed: 24150940
doi: 10.1093/nar/gkt937
De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).
pubmed: 25363760
pmcid: 4402723
doi: 10.1038/nature13772
Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).
pubmed: 23665959
pmcid: 3706629
doi: 10.1038/nature12141
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204
pmcid: 4640607
doi: 10.1126/sciadv.1500447
Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell Neurosci. 13, 385 (2019).
pubmed: 31481879
pmcid: 6710438
doi: 10.3389/fncel.2019.00385
Jahed, Z., Shams, H., Mehrbod, M. & Mofrad, M. R. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int. Rev. Cell Mol. Biol. 310, 171–220 (2014).
pubmed: 24725427
doi: 10.1016/B978-0-12-800180-6.00005-0
Rengachary, S. S. & Watanabe, I. Ultrastructure and pathogenesis of intracranial arachnoid cysts. J. Neuropathol. Exp. Neurol. 40, 61–83 (1981).
pubmed: 7205328
doi: 10.1097/00005072-198101000-00007
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
pubmed: 31619793
doi: 10.1038/s41586-019-1654-9
Rabiei, K., Hogfeldt, M. J., Doria-Medina, R. & Tisell, M. Surgery for intracranial arachnoid cysts in children—a prospective long-term study. Childs Nerv. Syst. 32, 1257–1263 (2016).
pubmed: 27000761
doi: 10.1007/s00381-016-3064-8
Tamburrini, G., Dal Fabbro, M., & Di Rocco, C. Sylvian fissure arachnoid cysts: a survey on their diagnostic workout and practical management. Childs Nerv. Syst. 24, 593–604 (2008).
pubmed: 18305944
doi: 10.1007/s00381-008-0585-9
Schulz, M. et al. Surgical management of intracranial arachnoid cysts in pediatric patients: radiological and clinical outcome. J. Neurosurg. Pediatr. 28, 102–112 (2021).
doi: 10.3171/2020.10.PEDS20839
Sadler, B. et al. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am. J. Hum. Genet. 108, 100–114 (2021).
pubmed: 33352116
doi: 10.1016/j.ajhg.2020.12.001
Duran, D. et al. Mutations in chromatin modifier and ephrin signaling genes in vein of galen malformation. Neuron 101, 429–443.e4 (2019).
pubmed: 30578106
doi: 10.1016/j.neuron.2018.11.041
Timberlake, A. T. et al. Genetic influence on neurodevelopment in nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 149, 1157–1165 (2022).
pubmed: 35286293
doi: 10.1097/PRS.0000000000008976
Retterer, K. et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704 (2016).
pubmed: 26633542
doi: 10.1038/gim.2015.148
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).
pubmed: 33568819
pmcid: 7875770
doi: 10.1038/s41586-021-03205-y
Mills, R. E. et al. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res. 21, 830–839 (2011).
pubmed: 21460062
pmcid: 3106316
doi: 10.1101/gr.115907.110
Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).
pubmed: 33057194
pmcid: 7116826
doi: 10.1038/s41586-020-2832-5
Ware, J. S., Samocha, K. E., Homsy, J. & Daly, M. J. Interpreting de novo variation in human disease using denovolyzeR. Curr. Protoc. Hum. Genet. 87, 7.25.1–7.25.15 (2015).
pubmed: 26439716
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).
pubmed: 20881960
pmcid: 2955183
doi: 10.1038/nature09410
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).
pubmed: 28991257
pmcid: 5675000
doi: 10.1038/ng.3970
Song, L. et al. STAB: a spatio-temporal cell atlas of the human brain. Nucleic Acids Res. 49, D1029–D1037 (2021).
pubmed: 32976581
doi: 10.1093/nar/gkaa762
Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).
pubmed: 30545855
pmcid: 6900982
doi: 10.1126/science.aat8077
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008
pmcid: 2631488
doi: 10.1186/1471-2105-9-559
Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771.e22 (2019).
pubmed: 31626773
pmcid: 8963725
doi: 10.1016/j.cell.2019.09.021
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299
pmcid: 2644678
doi: 10.1186/1471-2105-10-48
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).
pubmed: 24336805
doi: 10.1093/bioinformatics/btt703
DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59.e4 (2020).
pubmed: 32634398
pmcid: 7769050
doi: 10.1016/j.devcel.2020.06.009
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
pubmed: 30787437
pmcid: 6434952
doi: 10.1038/s41586-019-0969-x
Campello, R. J. G. B., Moulavi, D. & Sander, J. in Advances in Knowledge Discovery and Data Mining (eds. Pei, J. et al.) 160–172 (Springer Berlin Heidelberg, 2013).