Genomics assisted characterization of plant growth-promoting and metabolite producing psychrotolerant Himalayan Chryseobacterium cucumeris PCH239.
Chryseobacterium
Himalaya
Plant growth-promotion
Psychrotolerant
Siderophore
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
08 Mar 2023
08 Mar 2023
Historique:
received:
08
04
2022
accepted:
26
02
2023
revised:
13
02
2023
entrez:
8
3
2023
pubmed:
9
3
2023
medline:
11
3
2023
Statut:
epublish
Résumé
Here, we report the first complete genome of a psychrotolerant and yellow-pigmented rhizobacteria Chryseobacterium cucumeris PCH239. It was obtained from the rhizospheric soil of the Himalayan plant Bergenia ciliata. The genome consists of a single contig (5.098 Mb), 36.3% G + C content, and 4899 genes. The cold adaptation, stress response, and DNA repair genes promote survivability in a high-altitude environment. PCH239 grows in temperature (10-37 °C), pH (6.0-8.0), and NaCl (2.0%). The genome derived plant growth-promoting activities of siderophore production (siderophore units 53 ± 0.6), phosphate metabolism (PSI 5.0 ± 0.8), protease, indole acetic acid production (17.3 ± 0.5 µg/ml), and ammonia (2.89 ± 0.4 µmoles) were experimentally validated. Interestingly, PCH239 treatment of Arabidopsis seeds significantly enhances germination, primary, and hairy root growth. In contrast, Vigna radiata and Cicer arietinum seeds had healthy radicle and plumule elongation, suggesting varied plant growth-promotion effects. Our findings suggested the potential of PCH239 as a bio-fertilizer and biocontrol agent in the challenging conditions of cold and hilly regions.
Identifiants
pubmed: 36884102
doi: 10.1007/s00203-023-03456-5
pii: 10.1007/s00203-023-03456-5
doi:
Substances chimiques
Siderophores
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
108Subventions
Organisme : Department of Health Research, India
ID : 12014/25/2020-HR (GAP-0261)
Organisme : Council of Scientific and Industrial Research, India
ID : BSC209, MLP145
Organisme : Council of Scientific and Industrial Research, India
ID : BSC209, MLP145
Organisme : Council of Scientific and Industrial Research, India
ID : BSC209, MLP145
Organisme : Council of Scientific and Industrial Research, India
ID : BSC209, MLP145
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Adhikari P, Jain R, Sharma A, Pandey A (2021) Plant growth promotion at low temperature by phosphate-solubilizing Pseudomonas spp. isolated from high-altitude Himalayan soil. Microb Ecol 82:677–687. https://doi.org/10.1007/s00248-021-01702-1
doi: 10.1007/s00248-021-01702-1
pubmed: 33512536
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001
doi: 10.1016/j.jksus.2013.05.001
Ahmad M, Butt MA, Zhang G, Sultana S, Tariq A, Zafar M (2018) Bergenia ciliata: a comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomed Pharmacother 97:708–721. https://doi.org/10.1016/j.biopha.2017.10.141
doi: 10.1016/j.biopha.2017.10.141
pubmed: 29102914
Ayala-del-Río HL, Chain PS, Grzymski JJ et al (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312. https://doi.org/10.1128/AEM.02101-09
doi: 10.1128/AEM.02101-09
pubmed: 20154119
pmcid: 2849256
Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75
doi: 10.1186/1471-2164-9-75
Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G, Fardeau ML (2010) Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1876–1880. https://doi.org/10.1099/ijs.0.008631-0
doi: 10.1099/ijs.0.008631-0
pubmed: 19767354
Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Evol Microbiol 46:128–148. https://doi.org/10.1099/00207713-46-1-128
doi: 10.1099/00207713-46-1-128
Bhattacharyya C, Banerjee S, Acharya U, Mitra A, Mallick I, Haldar A, Haldar S, Ghosh A, Ghosh A (2020) Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling. India Sci Rep 10:15536. https://doi.org/10.1038/s41598-020-72439-z
doi: 10.1038/s41598-020-72439-z
pubmed: 32968101
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, Weber T (2021) AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:29–35. https://doi.org/10.1093/nar/gkab335
doi: 10.1093/nar/gkab335
Borker SS, Thakur A, Kumar S, Kumari S, Kumar R, Kumar S (2021) Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genom 22:307. https://doi.org/10.1186/s12864-021-07681-4
doi: 10.1186/s12864-021-07681-4
Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21:613–618. https://doi.org/10.1139/m75-088
doi: 10.1139/m75-088
pubmed: 164997
Dar GHH, Sofi S, Paddar SA, Kabli A (2018) Molecular characterization of rhizobacteria isolated from walnut (Juglans regia) rhizosphere in Western Himalayas and assessment of their plant growth promoting activities. Biodiversitas 19:712–719. https://doi.org/10.13057/biodiv/d190245
doi: 10.13057/biodiv/d190245
Dsouza M, Taylor MW, Turner SJ, Aislabie J (2014) Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus. PLoS ONE 9:e108009. https://doi.org/10.1371/journal.pone.0108009
doi: 10.1371/journal.pone.0108009
pubmed: 25285990
pmcid: 4186907
Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125. https://doi.org/10.1007/s10482-013-0095-y
doi: 10.1007/s10482-013-0095-y
pubmed: 24445491
Gao H, Yang ZK, Wu L, Thompson DK, Zhou J (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188:4560–4569. https://doi.org/10.1128/JB.01908-05
doi: 10.1128/JB.01908-05
pubmed: 16740962
pmcid: 1482949
Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401
doi: 10.6064/2012/963401
pubmed: 24278762
pmcid: 3820493
Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195. https://doi.org/10.1104/pp.26.1.192
doi: 10.1104/pp.26.1.192
pubmed: 16654351
pmcid: 437633
Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377. https://doi.org/10.1007/s00284-008-9339-x
doi: 10.1007/s00284-008-9339-x
pubmed: 19137371
Iwase T, Tajima A, Sugimoto S, Okuda KI, Hironaka I, Kamata Y, Takada K, Mizunoe Y (2013) A simple assay for measuring catalase activity: a visual approach. Sci Rep 3:3081. https://doi.org/10.1038/srep03081
doi: 10.1038/srep03081
pubmed: 24170119
pmcid: 3812649
Jana GA, Yaish MW (2021) Genome analysis of a salinity adapted Achromobacter xylosoxidans rhizobacteria from the date palm. Rhizosphere 19:100401. https://doi.org/10.1016/j.rhisph.2021.100401
doi: 10.1016/j.rhisph.2021.100401
Jeong JJ, Park BH, Park H, Choi IG, Kim KD (2016) Draft genome sequence of Chryseobacterium sp. strain GSE06, a biocontrol endophytic bacterium isolated from Cucumber (Cucumis sativus). Genome Announc 4:e00577-e616. https://doi.org/10.1128/genomeA.00577-16
doi: 10.1128/genomeA.00577-16
pubmed: 27313310
pmcid: 4911489
Judd CM, Mcclelland GH, Ryan CS (2017) Repeated-measures ANOVA. New York. In: Ch M (ed) Data analysis, 3rd edn. Routledge, pp 260–291
doi: 10.4324/9781315744131-11
Kampfer P, Dreyer U, Neef A, Dott W, Busse HJ (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97. https://doi.org/10.1099/ijs.0.02073-0
doi: 10.1099/ijs.0.02073-0
pubmed: 12656158
Kampfer P, Poppel MT, Wilharm G (2014) Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 64:1419–1427. https://doi.org/10.1099/ijs.0.058933-0
doi: 10.1099/ijs.0.058933-0
pubmed: 24449786
Kumar V, Kumar S, Darnal S, Patial V, Singh A, Thakur V, Kumar S, Singh D (2019) Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. 3 Biotech 9:275. https://doi.org/10.1007/s13205-019-1810-9
doi: 10.1007/s13205-019-1810-9
pubmed: 31245239
pmcid: 6586729
Kumar V, Thakur V, Ambika KV, Singh KR, D, (2020) Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 112:637–646. https://doi.org/10.1016/j.ygeno.2019.04.016
doi: 10.1016/j.ygeno.2019.04.016
pubmed: 31022438
Kumar R, Borker SS, Thakur A, Thapa P, Kumar S, Mukhia S, Anu K, Bhattacharya A, Kumar S (2021a) Physiological and genomic evidence supports the role of Serratia quinivorans PKL:12 as a biopriming agent for the biohardening of micropropagated Picrorhiza kurroa plantlets in cold regions. Genomics 113:1448–1457. https://doi.org/10.1016/j.ygeno.2021.03.019
doi: 10.1016/j.ygeno.2021.03.019
pubmed: 33744342
Kumar V, Darnal S, Kumar S, Kumar S, Singh D (2021b) Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194. Bioresour Technol 319:1235. https://doi.org/10.1016/j.biortech.2020.124235
doi: 10.1016/j.biortech.2020.124235
Kumar S, Kumar V, Ambika AAA, Nag D, Kumar V, Darnal S, Thakur V, Patial V, Singh D (2022) Microbial pigments: learning from Himalayan perspective to industrial applications. J Ind Microbiol Biotechnol 6:49. https://doi.org/10.1093/jimb/kuac017
doi: 10.1093/jimb/kuac017
Kushwaha K, Saxena J, Tripathi BK, Agarwal MK (2014) Detection of carotenoids in psychrotrophic bacteria by spectroscopic approach. J BioSci Biotechnol 3:253–260
Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760
doi: 10.1099/ijsem.0.000760
pubmed: 26585518
Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HA, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108. https://doi.org/10.1111/j.1365-2672.1995.tb02829.x
doi: 10.1111/j.1365-2672.1995.tb02829.x
pubmed: 7698955
Li W, Neill KR, Haft DH et al (2021) RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 49(1):D1020–D1028. https://doi.org/10.1093/nar/gkaa1105
doi: 10.1093/nar/gkaa1105
pubmed: 33270901
Lu Y, Ma D, He X, Wang F, Jianrong W, Liu Y, Jiao J, Deng J (2021) Bacillus subtilis KLBC BS6 induces resistance and defense-related response against Botrytis cinerea in blueberry fruit. Physiol Mol Plant Pathol 114:101599. https://doi.org/10.1016/j.pmpp.2020.101599
doi: 10.1016/j.pmpp.2020.101599
Lyngwi NA, Koijam K, Sharma D, Joshi SR (2013) Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical eastern Himalaya. Int J Trop Biol 61:467–490. https://doi.org/10.15517/rbt.v61i1.11141
doi: 10.15517/rbt.v61i1.11141
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
doi: 10.1111/j.1399-3054.1962.tb08052.x
Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9
doi: 10.1007/s11274-017-2364-9
pubmed: 28986676
pmcid: 5686270
Pailin T, Kang DH, Schmidt K, Fung DYC (2001) Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar. Lett Appl Microbiol 33:45–49. https://doi.org/10.1046/j.1472-765X.2001.00954.x
doi: 10.1046/j.1472-765X.2001.00954.x
pubmed: 11442814
Pandey A, Palni LMS (1998a) Microbes in Himalayan soils: biodiversity and potential applications. J Sci Indus Res 57:668–673
Pandey A, Palni LMS (1998b) Isolation of Pseudomonas corrugata from Sikkim Himalaya. World J Microbiol Biotechnol 14:411–413. https://doi.org/10.1023/A:1008825514148
doi: 10.1023/A:1008825514148
Pandey A, Yarzabal LA (2019) Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 103:643–657. https://doi.org/10.1007/s00253-018-9515-2
doi: 10.1007/s00253-018-9515-2
pubmed: 30465306
Park E, Cho M, Ki CS (2009) Correct use of repeated measures analysis of variance. Kor J Lab Med 29:1–9. https://doi.org/10.3343/kjlm.2009.29.1.1
doi: 10.3343/kjlm.2009.29.1.1
Paul D, Sinha SN (2017) Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga. Ann Agrar Sci 15:130–136. https://doi.org/10.1016/j.aasci.2016.10.001
doi: 10.1016/j.aasci.2016.10.001
Qin QL, Xie BB, Yu Y et al (2014) Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environ Microbiol 16:1642–1653. https://doi.org/10.1111/1462-2920.12318
doi: 10.1111/1462-2920.12318
pubmed: 25009843
Rahman A, Sitepu IR, Tang SY, Hashidoko Y (2010) Salkowski’s reagent test as a primary screening index for functionalities of Rhizobacteria isolated from wild Dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci Biotechnol Biochem 74:2202–2208. https://doi.org/10.1271/bbb.100360
doi: 10.1271/bbb.100360
pubmed: 21071871
Rana KL, Kour D, Kaur T, Devi R, Yadav A, Yadav AN (2018) Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J Appl Biol Biotechnol 9:41–50. https://doi.org/10.7324/JABB.2019.70103
doi: 10.7324/JABB.2019.70103
Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS, Kim KD (2013) Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 63:2835–2840. https://doi.org/10.1099/ijs.0.048496-0
doi: 10.1099/ijs.0.048496-0
pubmed: 23315413
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9
doi: 10.1016/0003-2697(87)90612-9
pubmed: 2952030
Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50:50–56. https://doi.org/10.1007/s12088-009-0024-y
doi: 10.1007/s12088-009-0024-y
pubmed: 23100807
Somayeh D, Ebrahimi M, Shirmohammadi E (2017) Influence of plant-growth-promoting bacteria on germination, growth and nutrients’ uptake of Onobrychis sativa L. under drought stress. J Plant Interact 12:200–208. https://doi.org/10.1080/17429145.2017.1316527
doi: 10.1080/17429145.2017.1316527
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis, version 11. Mo Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120
doi: 10.1093/molbev/msab120
Tandon HLS, Cescas MP, Tyner EH (1968) An acid-free vanadate-molybdate reagents for the determination of total phosphorus in soils. Soil Sci Soc Am Proc 32:48–51. https://doi.org/10.2136/sssaj1968.03615995003200010012x
doi: 10.2136/sssaj1968.03615995003200010012x
Venil CK, Zakaria ZA, Usha R, Ahmad WA (2014) Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 3:102–107. https://doi.org/10.1016/j.bcab.2014.02.006
doi: 10.1016/j.bcab.2014.02.006
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
doi: 10.1099/ijsem.0.001755
pubmed: 28005526
pmcid: 5563544
Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426. https://doi.org/10.1099/ijs.0.63331-0
doi: 10.1099/ijs.0.63331-0
pubmed: 15653912