Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in Camelina sativa.
Journal
The plant genome
ISSN: 1940-3372
Titre abrégé: Plant Genome
Pays: United States
ID NLM: 101273919
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
01
02
2023
received:
16
09
2022
accepted:
05
02
2023
medline:
20
6
2023
pubmed:
11
3
2023
entrez:
10
3
2023
Statut:
ppublish
Résumé
Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes. We performed whole genome homozygosity mapping to identify markers and candidate genes responsible for freezing tolerance difference between these two genotypes. A total of 28 F3 RILs were sequenced to ∼30× coverage, and parental lines were sequenced to >30-40× coverage with Pacific Biosciences high fidelity technology and 60× coverage using Illumina whole genome sequencing. Overall, about 126k homozygous single nucleotide polymorphism markers were identified that differentiate both parents. Moreover, 617 markers were also homozygous in F3 families fixed for freezing tolerance/susceptibility. All these markers mapped to two contigs forming a contiguous stretch of chromosome 11. The homozygosity mapping detected 9 homozygous blocks among the selected markers and 22 candidate genes with strong similarity to regions in or near the homozygous blocks. Two such genes were differentially expressed during cold acclimation in camelina. The largest block contained a cold-regulated plant thionin and a putative rotamase cyclophilin 2 gene previously associated with freezing resistance in arabidopsis (Arabidopsis thaliana). The second largest block contains several cysteine-rich RLK genes and a cold-regulated receptor serine/threonine kinase gene. We hypothesize that one or more of these genes may be primarily responsible for freezing tolerance differences in camelina varieties.
Substances chimiques
Arabidopsis Proteins
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e20318Informations de copyright
© 2023 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
Références
Abdullah, H. M., Akbari, P., Paulose, B., Schnell, D., Qi, W., Park, Y., Pareek, A., & Dhankher, O. P. (2016). Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnology for Biofuels and Bioproducts, 9, 136. https://doi.org/10.1186/s13068-016-0555-5
Anderson, J. V., Horvath, D. P., Doğramaci, M., Dorn, K. M., Chao, W. S., Watkin, E. E., Hernandez, A. G., Marks, M. D., & Gesch, R. (2018). Expression of FLOWERING LOCUS C and a frame shift mutation of this gene on chromosome 20 differentiate a summer- and winter-annual biotype of Camelina sativa. Plant Direct, 2, e00060. https://doi.org/10.1002/pld3.60
Anderson, J. V., Neubauer, M., Horvath, D. P., Chao, W. S., & Berti, M. T. (2022). Analysis of Camelina sativa transcriptomes identified specific transcription factors and processes associated with freezing tolerance in a winter biotype. Industrial Crops and Products, 177, 114414. https://doi.org/10.1016/j.indcrop.2021.114414
Anderson, J. V., Wittenberg, A., Li, H., & Berti, M. T. (2019). High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Industrial Crops and Products, 137, 501-507. https://doi.org/10.1016/j.Indcrop.2019.04.075
Augustyniak, A., Pawłowicz, I., Lechowicz, K., Izbiańska-Jankowska, K., Arasimowicz-Jelonek, M., Rapacz, M., Perlikowski, D., & Kosmala, A. (2020). Freezing tolerance of Lolium multiflorum/Festuca arundinacea introgression forms is associated with the high activity of antioxidant system and adjustment of photosynthetic activity under cold acclimation. International Journal of Molecular Science, 21, 5899. https://doi.org/10.3390/ijms21165899
Berti, M., Gesch, R., Eynck, C., Anderson, J., & Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710. https://doi.org/10.1016/j.indcrop.2016.09.034
Berti, M. T., Samarappuli, D., Johnson, B., & Gesch, R. W. (2017a). Integrating winter camelina into maize and soybean cropping systems. Industrial Crops and Products, 107, 595-601. https://doi.org/10.1016/j.indcrop.2017.06.014
Bouby, L. (1998). Two early finds of gold-of-pleasure (Camelina sp.) in middle Neolithic and Chalcolithic sites in western France. Antiquity, 72(276), 391-398. https://doi.org/10.1017/S0003598X0008666X
Burdiak, P., Rusaczonek, A., Witoń, D., Głów, D., & Karpiński, S. (2015). Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana. Journal of Experimental Botany, 66(11), 3325-3337. https://doi.org/10.1093/jxb/erv143
Bushnell, B. (2014). BBMap: A fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab (LBNL).
Chao, W. S., Wang, H., Horvath, D. P., & Anderson, J. V. (2019). Selection of endogenous reference genes for qRT-PCR analysis in Camelina sativa and identification of FLOWERING LOCUS C allele-specific markers to differentiate summer- and winter-biotypes. Industrial Crops and Products, 129, 495-502. https://doi.org/10.1016/j.indcrop.2018.12.017
Chaudhary, R., Koh, C. S., Kagale, S., Tang, L., Wu, S. W., Lv, Z., Mason, A. S., Sharpe, A. G., Diederichsen, A., & Parkin, I. A. P. (2020). Assessing diversity in the Camelina genus provides insights into the genome structure of Camelina sativa. Genes Genomics Genetics, 10(4), 1297-1308. https://doi.org/10.1534/g3.119.400957
Chen, H., Chen, X., Chen, D., Li, J., Zhang, Y., & Wang, A. (2015). A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biology, 15, 132. https://doi.org/10.1186/s12870-015-0521-6
Chen, K., Du, L., & Chen, Z. (2003). Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Molecular Biology, 53, 61-74. https://doi.org/10.1023/B:PLAN.0000009265.72567.58
Ding, Y., Li, H., Zhang, X., Xie, Q., Gong, Z., & Yang, S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell, 32, 278-289. https://doi.org/10.1016/j.devcel.2014.12.023
Ding, Y., Shi, Y., & Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plant. New Phytologist, 222(4), 1690-1704. https://doi.org/10.1111/nph.15696
Downey, R. K., & Rakow, G. F. W. (1987). Rapeseed and mustard. In W. R. Fehr (Ed.), Principles of cultivar development. Volume 2-Crop species (pp. 437-486). Macmillan Publishing Company.
Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.
Eberle, C. A., Thom, M. D., Nemec, K. T., Forcella, F., Lundgren, J. G., Gesch, R. W., Riedell, W. E., Papiernik, S. K., Wagner, A., Peterson, D. H., & Eklund, J. J. (2015). Using pennycress, camelina, and canola cash cover crops to provision pollinators. Industrial Crops and Products, 75, 20-25. https://doi.org/10.1016/j.indcrop.2015.06.026
Fiebelkorn, D., Horvath, D., & Rahman, M. (2018). Genome-wide association study for electrolyte leakage in rapeseed/canola (Brassica napus L.). Molecular Breeding, 38, 129. https://doi.org/10.1007/s11032-018-0892-0
Gallant, A. L., Euliss, N. H., & Browning, Z. (2014). Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services. PLoS ONE, 9(6), e99268. https://doi.org/10.1371/journal.pone.0099268
Gehan, M. A., Park, S., Gilmour, S. J., An, C., Lee, C.-M., & Thomashow, M. F. (2015). Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. The Plant Journal, 84(4), 682-693. https://doi.org/10.1111/tpj.13027
Gesch, R. (2014). Influence of genotype and sowing date on camelina growth and yield in the north central U.S. Industrial Crops and Products, 54, 209-215. http://doi.org/10.1016/j.indcrop.2014.01.034
Gesch, R. W., & Archer, D. W. (2013). Double-cropping with winter camelina in the northern corn belt to produce fuel and food. Industrial Crops and Products, 44, 718-725. https://doi.org/10.1016/j.indcrop.2012.05.023
Gesch, R. W., Archer, D. W., & Berti, M. T. (2014). Dual cropping winter camelina with soybean in the northern corn belt. Agronomy Journal, 106(5), 1735-1745. https://doi.org/10.2134/agronj14.0215
Gesch, R. W., & Cermak, S. C. (2011). Sowing date and tillage effects on fall-seeded camelina in the northern corn belt. Agronomy Journal, 103(4), 980-987. https://doi.org/10.2134/agronj2010.0485
Gesch, R. W., Matthees, H. L., Alvarez, A. L., & Gardner, R. D. (2018). Winter camelina: Crop growth, seed yield, and quality response to cultivars and seeding rate. Agronomy Journal, 58, 2089-2098. https://doi.org/10.2135/cropsci2018.01.0018
Gholipoorfeshkecheh, R., Agarwala, S., Krishnappa, S., Savitha, M. R., & Ramachandra, N. B. (2020). Whole-exome sequencing and homozygosity mapping identify variants in NCOR1 and MAP2K3 associated with nonsyndromic congenital heart defects. Egyptian Journal of Medical Human Genetics, 21, 58. https://doi.org/10.1186/s43042-020-00101-4
Goodman, H. M., Ecker, J. R., & Dean, C. (1995). The genome of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 92(24), 10831-10835. https://doi.org/10.1073/pnas.92.24.10831
Guy, C. L., Anderson, J. V., Haskell, D. W., & Li, Q.-B. (1994). CAPs, cors, dehydrins, and molecular chaperones: Their relationship with low temperature responses in spinach. In J. H. Cherry (Ed.), Biochemical and cellular mechanisms of stress tolerance in plants, NATO-ASI series, (Vol. H86, pp. 479-499). Springer-Verlag.
Horton, M. W., Willems, G., Sasaki, E., Koornneef, M., & Nordborg, M. (2016). The genetic architecture of freezing tolerance varies across the range of Arabidopsis thaliana. Plant, Cell & Environment, 39, 2570-2579.
Horvath, D., Anderson, J. V., Chao, W. S., Zheng, P., Buchwaldt, M., Parkin, I. A. P., & Dorn, K. (2019). Genes associated with chloroplasts and hormone-signaling, and transcription factors other than CBFs are associated with differential survival after low temperature treatments of Camelina sativa biotype. PLoS ONE, 14(5), e0217692. https://doi.org/10.1371/journal.pone.0217692
Huang, Z., Zhao, N., Qin, M., & Xu, A. (2018). Mapping of quantitative trait loci related to cold tolerance in Brassica napus L. Journal of Plant Physiology, 231, 147-154. https://doi.org/10.1016/j.jplph.2018.09.012
Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., & Thomashow, M. F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280, 104-106. https://doi.org/10.1126/science.280.5360.104
Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W. E., Tuteja, R., Spillane, C., Robinson, S. J., Links, M. G., Clarke, C., Higgins, E. E., Huebert, T., Sharpe, A. G., & Parkin, I. A. P. (2014). The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nature Communications, 5, 3706. https://doi.org/10.1038/ncomms4706
Kagale, S., Nixon, J., Khedikar, Y., Pasha, A., Provart, N. J., Clarke, W. E., Bollina, V., Robinson, S. J., Coutu, C., Hegedus, D. D., Sharpe, A. G., & Parkin, I. A. P. (2016). The developmental transcriptome atlas of the biofuel crop Camelina sativa. Plant Journal, 88, 879-894. https://doi.org/10.1111/tpj.13302
Kumar, S., Deng, C. H., Hunt, M., Kirk, C., Wiedow, C., Rowan, D., Wu, J., & Brewer, L. (2020). Homozygosity mapping reveals population history and trait architecture in self-incompatible pear (Pyrus spp.). Frontiers Plant Science, 11, 590846. https://doi.org/10.3389/fpls.2020.590846
Li, H., Hu, X., Lovell, J. T., Grabowski, P. P., Mamidi, S., Chen, C., Amirebrahimi, M., Kahanda, I., Mumey, B., Barry, K., Kudrna, D., Schmutz, J., Lachowiec, J., & Lu, C. (2021). Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping. Plant Genome, 14(2), e20110. https://doi.org/10.1002/tpg2.20110
Li, M., Guo, G., Pidon, H., Melzer, M., Prina, A. R., Börner, T., & Stein, N. (2021). ATP-dependent Clp protease subunit C1, HvClpC1, is a strong candidate gene for barley variegation mutant luteostrians as revealed by genetic mapping and genomic re-sequencing. Frontiers in Plant Science, 12, 664085. https://doi.org/10.3389/fpls.2021.664085
Li, Z., & Xu, Y. (2021). Bulk segregation analysis in the NGS era: A review of its teenage years. The Plant Journal, 109(6), 1355-1374. https://doi.org/10.1111/tpj.15646
Lim, C. W., Baek, W., Jung, J., Kim, J. H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 16(7), 15251-15270. https://doi.org/10.3390/ijms160715251
Lim, J., Lim, C. W., & Lee, S. C. (2020). Pepper novel serine-threonine kinase CaDIK1 regulates drought tolerance via modulating ABA sensitivity. Frontier Plant Science, 11, 1133. https://doi.org/10.3389/fpls.2020.01133
Liu, X., Brost, J., Hutcheon, C., Guilfoil, R., & Wilson, A. K. (2012). Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants. In Vitro Cellular & Developmental Biology-Plant, 48, 462-468. https://doi.org/10.1007/s11627-012-9459-7
Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27, 273-278. https://doi.org/10.1007/s00299-007-0454-0
Lu, K., Liang, S., Wu, Z., Bi, C., Yu, Y.-T., Wang, X.-F., & Zhang, D.-P. (2016). Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. Journal of Experimental Botany, 67(17), 5009-5027. https://doi.org/10.1093/jxb/erw266
Luo, Z., Szczepanek, A., & Abdel-Haleem, H. (2020). Genome-wide association study (GWAS) analysis of camelina seedling germination under salt stress condition. Agronomy, 10(9), 1444. https://doi.org/10.3390/agronomy10091444
Machado, E. L., Silva, S. A., Fernandes, L. D. S., & Brasileiro, H. S. (2016). Genetic variability and homozygosity in a F4 castor bean population by microsatellite markers. Bragantia, 75, 307-313. https://doi.org/10.1590/1678-4499.536
Mahmoud, M., Zywicki, M., Twardowski, T., & Karlowski, W. M. (2019). Efficiency of PacBio long read correction by 2nd generation Illumina sequencing. Genomics, 111, 43-49. https://doi.org/10.1016/j.ygeno.2017.12.011
Malik, M. R., Tang, J., Sharma, N., Burkitt, C., Ji, Y., Mykytyshyn, M., Bohmert-Tatarev, K., Peoples, O., & Snell, K. D. (2018). Camelina sativa, an oilseed at the nexus between model system and commercial crop. Plant Cell Reports, 37(10), 1367-1381. https://doi.org/10.1007/s00299-018-2308-3
Mao, X., Zhang, H., Tian, S., Chang, X., & Jing, R. (2010). TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Journal of Experimental Botany, 61(3), 683-696. https://doi.org/10.1093/jxb/erp331
Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., & Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Computational Biology, 14(1), e1005944. https://doi.org/10.1371/journal.pcbi.1005944
McVay, K. A., & Lamb, P. F. (2008). Camelina production in Montana. Montana State University. http://store.msuextension.org/publications/AgandNaturalResources/MT200701AG.pdf
Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings National Academy of Sciences USA, 88, 9828-9832. https://doi.org/10.1073/pnas.88.21.9828
Moore, R. H., Thornhill, K. L., Weinzierl, B., Sauer, D., D'ascoli, E., Kim, J., Lichtenstern, M., Scheibe, M., Beaton, B., Beyersdorf, A. J., Barrick, J., Bulzan, D., Corr, C. A., Crosbie, E., Jurkat, T., Martin, R., Riddick, D., Shook, M., Slover, G., … Anderson, B. E. (2017). Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature, 543, 411-415. https://doi.org/10.1038/nature21420
Oakley, C. G., Ågren, J., Atchison, R. A., & Schemske, D. W. (2014). QTL mapping of freezing tolerance: Links to fitness and adaptive trade-offs. Molecular Ecology, 23(17), 4304-4315. https://doi.org/10.1111/mec.12862
Osakabe, Y., Mizuno, S., Tanaka, H., Maruyama, K., Osakabe, K., Todaka, D., Fujita, Y., Kobayashi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2010). Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. Journal of Biological Chemistry, 285(12), 9190-9201. https://doi.org/10.1074/jbc.M109.051938
Pearce, R. (2001). Plant freezing and damage. Annals of Botany, 87(4), 417-424. https://doi.org/10.1006/anbo.2000.1352
Pelagio-Flores, R., Muñoz-Parra, E., Barrera-Ortiz, S., Ortiz-Castro, R., Saenz-Mata, J., Ortega-Amaro, M. A., Jiménez-Bremont, J. F., & López-Bucio, J. (2020). The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid response. Planta, 251(1), 2. https://doi.org/10.1007/s00425-019-03296-y
Rasheed, A., Hao, Y., Xia, X., Khan, A., Xu, Y., Varshney, R. K., & He, Z. (2017). Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 10(8), 1047-1064. https://doi.org/10.1016/j.molp.2017.06.008
Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics, 13(5), 278-289. https://doi.org/10.1016/j.gpb.2015.08.002
Saucke, H., & Ackermann, K. (2006). Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Research, 46(6), 453-461. https://doi.org/10.1111/j.1365-3180.2006.00530.x
Sawicki, M., Rondeau, M., Courteaux, B., Rabenoelina, F., Guerriero, G., Gomès, E., Soubigou-Taconnat, L., Balzergue, S., Clément, C., Barka, E. A., Vaillant-Gaveau, N., & Jacquard, C. (2019). On a cold night: Transcriptomics of grapevine flower unveils signal transduction and impacted metabolism. International Journal of Molecular Sciences, 20, 1130. https://doi.org/10.3390/ijms20051130
Seelow, D., & Schuelke, M. (2012). Homozygosity Mapper 2012-Bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Research, 40, 516-520. https://doi.org/10.1093/nar/gks487
Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6, 410-417. https://doi.org/10.1016/S1369-5266(03)00092-X
Shonnard, D. R., Williams, L., & Kalnes, T. N. (2010). Camelina-derived jet fuel and diesel: Sustainable advanced biofuels. Environmental Progress & Sustainable Energy, 3, 382-392. https://doi.org/10.1002/ep.10461
Song, L., Jiang, L., Chen, Y., Shu, Y., Bai, Y., & Guo, C. (2016). Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Functional & Integrative Genomics, 16(5), 495-511. https://doi.org/10.1007/s10142-016-0500-5
Soorni, J., Kazemitabar, S., Kahrizi, D., Dehestani, A., & Bagheri, N. (2017). Screening of camelina (Camelina sativa L.) double haploid lines for freezing tolerance in the seedling stage. Genetica, 49, 173-181. https://doi.org/10.2298/GENSR1701173S
Sutka, J. (2001). Genes for frost tolerance in wheat. Euphytica, 119, 169-177. https://doi.org/10.1023/A:1017520720183
Tang, B., Xie, L., Yang, H., Li, X., Chen, Y., Zou, X., Liu, F., & Dai, X. (2022). Analysis of the expression and function of key genes in pepper under low-temperature stress. Frontier Plant Science, 13, 852511. https://doi.org/10.3389/fpls.2022.852511
Thomashow, M. F. (1990). Molecular genetics of cold acclimation in higher plants. Advances in Genetics, 28, 99-131. https://doi.org/10.1016/S0065-2660(08)60525-8
Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review Plant Physiology & Plant Molecular Biology, 50, 571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
Vollmann, J., Moritz, T., Kargl, C., Baumgartner, S., & Wagentristl, H. (2007). Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Industrial Crops and Products, 26, 270-277. https://doi.org/10.1016/j.indcrop.2007.03.017
Walia, M. K., Wells, M. S., Cubins, J., Wyse, D., Gardner, R. D., Forcella, F., & Gesch, R. (2018). Winter camelina seed yield and quality responses to harvest time. Industrial Crops and Products, 124, 765-775. https://doi.org/10.1016/j.indcrop.2018.08.025
Wang, Z., Yu, A., Li, F., Xu, W., Han, B., Cheng, X., & Liu, A. (2021). Bulked segregant analysis reveals candidate genes responsible for dwarf formation in woody oilseed crop castor bean. Scientific Reports, 11, 6277. https://doi.org/10.1038/s41598-021-85644-1
Weng, Y., Ge, L., Jia, S., Mao, P., & Ma, X. (2020). Cyclophilin AtROC1S58F confers Arabidopsis cold tolerance by modulating jasmonic acid signaling and antioxidant metabolism. Plant Physiology and Biochemistry, 152, 81-89. https://doi.org/10.1016/j.plaphy.2020.04.012
Wilke, B. J., & Snapp, S. S. (2008). Winter cover crops for local ecosystems: Linking plant traits and ecosystem function. Journal of the Science of Food and Agriculture, 2008, 88, 551-557. https://doi.org/10.1002/jsfa.3149
Wrucke, D. F., Talukder, Z. I., & Rahman, M. (2020). Genome-wide association study for frost tolerance in rapeseed/canola (Brassica napus) under simulating freezing conditions. Plant Breeding, 139(2), 356-367. https://doi.org/10.1111/pbr.12771
Wrzaczek, M., Brosché, M., Salojärvi, J., Kangasjärvi, S., Idänheimo, N., Mersmann, S., Robatzek, S., Karpiński, S., Karpińska, B., & Kangasjärvi, J. (2010). Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biology, 10, 95. https://doi.org/10.1186/1471-2229-10-95
Ye, Y., Ding, Y., Jiang, Q., Wang, F., Sun, J., & Zhu, C. (2017). The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Reports, 36(2), 235-242. https://doi.org/10.1007/s00299-016-2084-x
Zeinali, S., Youssefian, L., Vahidnezhad, H., Saeidian, A. H., Sotoudeh, S., Bagherian, H., & Uitto, J. (2021). Autozygosity mapping by genome-wide single nucleotide polymorphism array identifies a novel homozygous HR mutation in a consanguineous family with universal hereditary hair loss. International Journal of Dermatology and Venereology, 4(2), 82-85. https://doi.org/10.1097/JD9.0000000000000168
Zhang, X., Han, X., Shi, R., Yang, G., Qi, L., Wang, R., & Li, G. (2013a). Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease tolerance to Pseudomonas syringae. Plant Physiology and Biochemistry, 73, 383-391. https://doi.org/10.1016/j.plaphy.2013.10.024
Zhang, X., Yang, G., Shi, R., Han, X., Qi, L., Wang, R., Xiong, L., & Li, G. (2013b). Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiology and Biochemistry, 67, 189-198. https://doi.org/10.1016/j.plaphy.2013.03.013