QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase.
QM/MM
RutA enzyme
absorption spectra
flavin
molecular oxygen
monooxygenases
quantum chemistry
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
06 Mar 2023
06 Mar 2023
Historique:
received:
27
01
2023
revised:
21
02
2023
accepted:
03
03
2023
entrez:
11
3
2023
pubmed:
12
3
2023
medline:
15
3
2023
Statut:
epublish
Résumé
Oxygenase activity of the flavin-dependent enzyme RutA is commonly associated with the formation of flavin-oxygen adducts in the enzyme active site. We report the results of quantum mechanics/molecular mechanics (QM/MM) modeling of possible reaction pathways initiated by various triplet state complexes of the molecular oxygen with the reduced flavin mononucleotide (FMN) formed in the protein cavities. According to the calculation results, these triplet-state flavin-oxygen complexes can be located at both
Identifiants
pubmed: 36903648
pii: molecules28052405
doi: 10.3390/molecules28052405
pmc: PMC10005588
pii:
doi:
Substances chimiques
Mixed Function Oxygenases
EC 1.-
Peroxides
0
Flavins
0
Oxygen
S88TT14065
Flavin Mononucleotide
7N464URE7E
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Russian Science Foundation
ID : 22-13-00012
Références
Phys Chem Chem Phys. 2019 Aug 14;21(30):16526-16537
pubmed: 31312822
J Chem Phys. 2011 Jun 7;134(21):214113
pubmed: 21663350
J Chem Theory Comput. 2012 Nov 13;8(11):4069-80
pubmed: 26605574
Nature. 2013 Nov 28;503(7477):552-556
pubmed: 24162851
J Chem Phys. 2020 Jul 28;153(4):044130
pubmed: 32752662
Adv Protein Chem. 2003;66:27-85
pubmed: 14631816
Biochemistry. 2017 Jul 25;56(29):3708-3709
pubmed: 28661684
J Chem Theory Comput. 2021 Feb 9;17(2):605-613
pubmed: 33449693
Phys Chem Chem Phys. 2020 Jun 10;22(22):12447-12455
pubmed: 32458897
Nat Chem Biol. 2020 May;16(5):556-563
pubmed: 32066967
J Phys Chem B. 2019 Jul 25;123(29):6133-6149
pubmed: 31042385
J Phys Chem A. 2019 May 23;123(20):4354-4359
pubmed: 31058505
Chem Rev. 2018 Aug 8;118(15):7293-7361
pubmed: 30040389
Sci Rep. 2014 Jan 24;4:3845
pubmed: 24457842
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Biochemistry. 2021 Mar 9;60(9):711-724
pubmed: 33630571
Mol Inform. 2023 Feb;42(2):e2200175
pubmed: 36259359
Chem Rev. 2017 Nov 22;117(22):13502-13565
pubmed: 29083892
J Chem Theory Comput. 2022 Aug 9;18(8):5056-5067
pubmed: 35797455
Chem Rev. 2018 Feb 28;118(4):1742-1769
pubmed: 29323892
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4909-4914
pubmed: 29686059
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5114-9
pubmed: 16540542
J Am Chem Soc. 2012 Feb 8;134(5):2732-41
pubmed: 22239272
J Phys Chem B. 2021 Jan 28;125(3):757-770
pubmed: 33411528
Molecules. 2023 Jan 04;28(2):
pubmed: 36677562
Arch Biochem Biophys. 2010 Jan 1;493(1):26-36
pubmed: 19944667
Photochem Photobiol. 2019 Mar;95(2):662-674
pubmed: 30257038
J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273
pubmed: 23341755
J Phys Chem B. 2015 Apr 30;119(17):5444-52
pubmed: 25867185
Nat Biotechnol. 2011 Sep 11;29(10):942-7
pubmed: 21909082
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):
pubmed: 34857630
Arch Biochem Biophys. 2021 Feb 15;698:108732
pubmed: 33358998
J Am Chem Soc. 2013 Aug 7;135(31):11541-9
pubmed: 23837665