Development of high-copy number plasmids in Pseudoalteromonas haloplanktis TAC125.
Cold-adapted bacteria
High-copy plasmid
Pseudoalteromonas haloplanktis TAC125
Recombinant protein production
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
17
10
2022
accepted:
21
02
2023
revised:
23
01
2023
pubmed:
14
3
2023
medline:
25
3
2023
entrez:
13
3
2023
Statut:
ppublish
Résumé
The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is considered an interesting alternative host for the recombinant protein production, that can be explored when the conventional bacterial expression systems fail. Indeed, the manufacture of all the difficult-to-express proteins produced so far in this bacterial platform gave back soluble and active products. Despite these promising results, the low yield of recombinant protein production achieved is hampering the wider and industrial exploitation of this psychrophilic cell factory. All the expression plasmids developed so far in PhTAC125 are based on the origin of replication of the endogenous pMtBL plasmid and are maintained at a very low copy number. In this work, we set up an experimental strategy to select mutated OriR sequences endowed with the ability to establish recombinant plasmids at higher multiplicity per cell. The solution to this major production bottleneck was achieved by the construction of a library of psychrophilic vectors, each containing a randomly mutated version of pMtBL OriR, and its screening by fluorescence-activated cell sorting (FACS). The selected clones allowed the identification of mutated OriR sequences effective in enhancing the plasmid copy number of approximately two orders of magnitude, and the production of the recombinant green fluorescent protein was increased up to twenty times approximately. Moreover, the molecular characterization of the different mutant OriR sequences allowed us to suggest some preliminary clues on the pMtBL replication mechanism that deserve to be further investigated in the future. KEY POINTS: • Setup of an electroporation procedure for Pseudoalteromonas haloplanktis TAC125. • Two order of magnitude improvement of OriR-derived psychrophilic expression systems. • Almost twenty times enhancement in Green fluorescent protein production.
Identifiants
pubmed: 36912903
doi: 10.1007/s00253-023-12448-w
pii: 10.1007/s00253-023-12448-w
pmc: PMC10033558
doi:
Substances chimiques
Green Fluorescent Proteins
147336-22-9
Recombinant Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2469-2481Subventions
Organisme : Italian National Antarctic Programme
ID : PNRA18_00335
Informations de copyright
© 2023. The Author(s).
Références
Appl Microbiol Biotechnol. 2017 Jan;101(2):725-734
pubmed: 27796433
Front Microbiol. 2014 Nov 06;5:596
pubmed: 25426110
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):299-310
pubmed: 15546673
Recent Pat DNA Gene Seq. 2010 Jan;4(1):58-73
pubmed: 20218961
Microb Cell Fact. 2016 Dec 19;15(1):211
pubmed: 27993152
Mol Microbiol. 1998 Sep;29(5):1137-45
pubmed: 9767582
Res Microbiol. 1996 Mar-Apr;147(3):133-43
pubmed: 8761732
Biophys J. 2016 Aug 9;111(3):467-479
pubmed: 27508432
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Curr Protoc Protein Sci. 2010 Aug;Chapter 5:5.24.1-5.24.29
pubmed: 20814932
Nucleic Acids Res. 2014 Jan;42(2):1042-51
pubmed: 24137005
Microb Cell Fact. 2008 Feb 07;7:2
pubmed: 18257924
Res Microbiol. 2022 May-Jun;173(4-5):103939
pubmed: 35307545
Environ Microbiol. 2015 Mar;17(3):751-66
pubmed: 24889559
Microb Cell Fact. 2008 Mar 07;7:6
pubmed: 18328094
J Biotechnol. 2006 Dec 15;127(1):141-50
pubmed: 16859797
Metab Eng. 2020 Sep;61:360-368
pubmed: 32710928
J Biol Eng. 2011 Jul 25;5:10
pubmed: 21787416
Biotechnol Adv. 2012 May-Jun;30(3):691-708
pubmed: 22244816
Extremophiles. 2001 Aug;5(4):257-64
pubmed: 11523895
J Biotechnol. 2007 Jan 1;127(2):199-210
pubmed: 16959351
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Methods Mol Biol. 2022;2406:219-232
pubmed: 35089560
Biomolecules. 2014 Jan 16;4(1):117-39
pubmed: 24970208
Microb Cell Fact. 2019 Sep 4;18(1):151
pubmed: 31484572
Cell. 1976 Dec;9(4 PT 2):707-16
pubmed: 797459
Biotechnol Prog. 2011 Jan-Feb;27(1):38-46
pubmed: 21312353
Nucleic Acids Res. 2003 Jan 1;31(1):28-33
pubmed: 12519941
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
pubmed: 12824337
Mar Biotechnol (NY). 2001 Mar;3(2):96-9
pubmed: 14961370
Appl Microbiol Biotechnol. 2015 Jul;99(14):5863-74
pubmed: 25616525
Metabolites. 2021 Jul 28;11(8):
pubmed: 34436432
Biotechnol Bioeng. 2021 Jan;118(1):94-105
pubmed: 32880889
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Microb Cell Fact. 2017 Nov 28;16(1):220
pubmed: 29183374
Biotechnol Bioeng. 1998 Sep 20;59(6):666-72
pubmed: 10099386
Genome Res. 2005 Oct;15(10):1325-35
pubmed: 16169927
Front Bioeng Biotechnol. 2019 Dec 20;7:420
pubmed: 31921823
Sci Rep. 2019 Nov 11;9(1):16444
pubmed: 31712730
Microorganisms. 2020 Sep 24;8(10):
pubmed: 32987756
Extremophiles. 2004 Apr;8(2):125-32
pubmed: 15064979
EcoSal Plus. 2020 Nov;9(1):
pubmed: 33210586
Microb Cell Fact. 2022 Oct 14;21(1):211
pubmed: 36242022