Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
21 03 2023
Historique:
entrez: 13 3 2023
pubmed: 14 3 2023
medline: 16 3 2023
Statut: ppublish

Résumé

Methanol is an ideal feedstock for chemical and biological manufacturing. Constructing an efficient cell factory is essential for producing complex compounds through methanol biotransformation, in which coordinating methanol use and product synthesis is often necessary. In methylotrophic yeast, methanol utilization mainly occurs in peroxisomes, which creates challenges in driving the metabolic flux toward product biosynthesis. Here, we observed that constructing the cytosolic biosynthesis pathway resulted in compromised fatty alcohol production in the methylotrophic yeast

Identifiants

pubmed: 36913588
doi: 10.1073/pnas.2220816120
pmc: PMC10041095
doi:

Substances chimiques

Fatty Alcohols 0
Methanol Y4S76JWI15

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2220816120

Références

Nat Commun. 2016 Mar 30;7:11152
pubmed: 27025684
Biotechnol Biofuels. 2016 May 20;9:107
pubmed: 27213014
Nat Metab. 2022 Jul;4(7):932-943
pubmed: 35817856
Metab Eng. 2017 Jul;42:115-125
pubmed: 28606738
Metab Eng. 2020 Jan;57:151-161
pubmed: 31711816
Biochim Biophys Acta. 2006 Dec;1763(12):1453-62
pubmed: 17023065
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10848-53
pubmed: 27621436
Microb Cell Fact. 2016 Feb 01;15:24
pubmed: 26830023
Trends Biotechnol. 2020 Jun;38(6):650-666
pubmed: 31932066
iScience. 2021 Feb 09;24(3):102168
pubmed: 33665582
J Am Chem Soc. 2016 Nov 30;138(47):15368-15377
pubmed: 27753483
Nat Chem Biol. 2021 Jan;17(1):96-103
pubmed: 33046851
Biochim Biophys Acta. 2007 Mar;1771(3):255-70
pubmed: 16950653
Nat Chem Biol. 2022 May;18(5):520-529
pubmed: 35484257
Nat Biotechnol. 2013 Apr;31(4):335-41
pubmed: 23417095
Curr Opin Biotechnol. 2022 Apr;74:171-179
pubmed: 34952430
Biochemistry. 2011 Dec 6;50(48):10550-8
pubmed: 22035211
Synth Syst Biotechnol. 2020 Jul 01;5(3):179-186
pubmed: 32637671
Biotechnol Biofuels. 2014 Jun 18;7:94
pubmed: 25024742
Synth Syst Biotechnol. 2021 Dec 15;7(1):498-505
pubmed: 34977394
Biotechnol Biofuels Bioprod. 2022 Dec 16;15(1):141
pubmed: 36527110
J Ind Microbiol Biotechnol. 2015 Nov;42(11):1463-72
pubmed: 26318028
BMC Biochem. 2011 Dec 12;12:64
pubmed: 22151413
Biochim Biophys Acta. 2011 Oct;1811(10):587-96
pubmed: 21782973
Nat Commun. 2016 May 25;7:11709
pubmed: 27222209
FEBS Lett. 2021 Mar;595(6):763-772
pubmed: 33112423
Metab Eng. 2011 Mar;13(2):169-76
pubmed: 21220042
Metab Eng. 2015 Jan;27:10-19
pubmed: 25466225
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201711119
pubmed: 35858340
Cell. 2018 Sep 6;174(6):1549-1558.e14
pubmed: 30100189
Synth Syst Biotechnol. 2021 Mar 31;6(2):63-68
pubmed: 33869812
Biochim Biophys Acta. 2013 Aug;1830(8):4102-16
pubmed: 23628704
Cell. 2020 Aug 20;182(4):933-946.e14
pubmed: 32780992
Front Bioeng Biotechnol. 2020 Dec 03;8:610936
pubmed: 33344437
ACS Synth Biol. 2021 Jun 18;10(6):1417-1428
pubmed: 34003632
Appl Microbiol Biotechnol. 2021 Dec;105(23):8761-8769
pubmed: 34748038
Metab Eng. 2011 Sep;13(5):474-81
pubmed: 21601648
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31789-31799
pubmed: 33268495
Metab Eng. 2019 Dec;56:60-68
pubmed: 31470116
Appl Environ Microbiol. 2009 May;75(9):2758-64
pubmed: 19270127
Biotechnol J. 2023 Jan 23;:e2200510
pubmed: 36689702
Cell Mol Life Sci. 2003 Sep;60(9):1838-51
pubmed: 14523547
Sci Rep. 2016 May 27;6:26884
pubmed: 27230732
Nat Chem Biol. 2020 Feb;16(2):113-121
pubmed: 31974527
Biochem J. 2007 Nov 15;408(1):61-8
pubmed: 17688423
Appl Microbiol Biotechnol. 2010 Sep;88(2):497-507
pubmed: 20635082
Methods Enzymol. 2019;617:83-111
pubmed: 30784416

Auteurs

Xiaoxin Zhai (X)

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Jiaoqi Gao (J)

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Yunxia Li (Y)

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Martin Grininger (M)

Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main D-60438, Germany.

Yongjin J Zhou (YJ)

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
Animals Rumen Methane Fermentation Cannabis

Metabolic engineering of

Jae Sung Cho, Zi Wei Luo, Cheon Woo Moon et al.
1.00
Corynebacterium glutamicum Metabolic Engineering Dicarboxylic Acids Pyridines Pyrones

Classifications MeSH