Exploration of the Production of Three Thiodiketopiperazines by an Endophytic Fungal Strain of Cophinforma mamane.


Journal

Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 17 11 2022
accepted: 12 03 2023
medline: 28 4 2023
pubmed: 16 3 2023
entrez: 15 3 2023
Statut: ppublish

Résumé

Endophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A-C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A-C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.

Identifiants

pubmed: 36919620
doi: 10.1002/cbdv.202201087
doi:

Substances chimiques

Piperazines 0
botryosulfuranol C 0
botryosulfuranol A 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202201087

Subventions

Organisme : Institut de Recherche pour le Développement of France

Informations de copyright

© 2023 Wiley-VHCA AG, Zurich, Switzerland.

Références

E. Martinez-Klimova, K. Rodríguez-Peña, S. Sánchez, ‘Endophytes as sources of antibiotics’, Biochem. Pharmacol. 2017, 134, 1-17.
A. Alvin, K. I. Miller, B. A. Neilan, ‘Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds’, Microbiol. Res. 2014, 169, 483-495.
V. Knight, J. J. Sanglier, D. DiTullio, S. Braccili, P. Bonner, J. Waters, D. Hughes, L. Zhang, ‘Diversifying microbial natural products for drug discovery’, Appl. Microbiol. Biotechnol. 2003, 62, 446-458.
M. Jia, L. Chen, H.-L. Xin, C.-J. Zheng, K. Rahman, T. Han, L.-P. Qin, ‘A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review’, Front. Microbiol. 2016, 7, 1-14.
G. Brader, S. Compant, B. Mitter, F. Trognitz, A. Sessitsch, ‘Metabolic potential of endophytic bacteria’, Curr. Opin. Biotechnol. 2014, 27, 30-37.
K. M. VanderMolen, B. A. Darveaux, W.-L. Chen, S. M. Swanson, C. J. Pearce, N. H. Oberlies, ‘Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite’, RSC Adv. 2014, 4, 18329-18335.
H. B. Bode, B. Bethe, R. Höfs, A. Zeeck, ‘Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity’, ChemBioChem 2002, 3, 619.
R. Pan, X. Bai, J. Chen, H. Zhang, H. Wang, ‘Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review’, Front. Microbiol. 2019, 10, 1-20.
S. Romano, S. Jackson, S. Patry, A. Dobson, ‘Extending the ‘One Strain Many Compounds’ (OSMAC) Principle to Marine Microorganisms’, Mar. Drugs 2018, 16, 244.
N. P. Ariantari, G. Daletos, A. Mándi, T. Kurtán, W. E. G. Müller, W. Lin, E. Ancheeva, P. Proksch, ‘Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach’, RSC Adv. 2019, 9, 25119-25132.
N. M. Tran-Cong, A. Mándi, T. Kurtán, W. E. G. Müller, R. Kalscheuer, W. Lin, Z. Liu, P. Proksch, ‘Induction of cryptic metabolites of the endophytic fungus: Trichocladium sp. through OSMAC and co-cultivation’, RSC Adv. 2019, 9, 27279-27288.
B. Fan, D. Parrot, M. Blümel, A. Labes, D. Tasdemir, ‘Influence of OSMAC-Based Cultivation in Metabolome and Anticancer Activity of Fungi Associated with the Brown Alga Fucus vesiculosus’, Mar. Drugs 2019, 17, 67.
D. Tisch, M. Schmoll, ‘Light regulation of metabolic pathways in fungi’, Appl. Microbiol. Biotechnol. 2010, 85, 1259-1277.
Z. Yu, R. Fischer, ‘Light sensing and responses in fungi’, Nat. Rev. Microbiol. 2019, 17, 25-36.
C. Roullier, S. Bertrand, E. Blanchet, M. Peigné, T. Robiou du Pont, Y. Guitton, Y. Pouchus, O. Grovel, ‘Time Dependency of Chemodiversity and Biosynthetic Pathways: An LC/MS Metabolomic Study of Marine-Sourced Penicillium’, Mar. Drugs 2016, 14, 103.
S. Peters, H.-G. Janssen, G. Vivó-Truyols, ‘Trend analysis of time-series data: A novel method for untargeted metabolite discovery’, Anal. Chim. Acta 2010, 663, 98-104.
S. Bertrand, A. Azzollini, O. Schumpp, N. Bohni, J. Schrenzel, M. Monod, K. Gindro, J. L. Wolfender, ‘Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics’, Mol. BioSyst. 2014, 10, 2289-2298.
J. N. Choi, J. Kim, M. Y. Lee, D. K. Park, Y. S. Hong, C. H. Lee, ‘Metabolomics revealed novel isoflavones and optimal cultivation time of cordyceps militaris fermentation’, J. Agricultural and Food Chemistry 2010, 58, 4258-4267.
A. Triastuti, M. Haddad, F. Barakat, K. Mejia, G. Rabouille, N. Fabre, C. Amasifuen, P. Jargeat, M. Vansteelandt, ‘Dynamics of Chemical Diversity during Co-Cultures: An Integrative Time-Scale Metabolomics Study of Fungal Endophytes Cophinforma mamane and Fusarium solani’, Chem. Biodiversity 2021, 18, 10.1002/cbdv.202000672.
A. Triastuti, M. Vansteelandt, F. Barakat, M. Trinel, P. Jargeat, N. Fabre, C. A. Amasifuen Guerra, K. Mejia, A. Valentin, M. Haddad, ‘How Histone Deacetylase Inhibitors Alter the Secondary Metabolites of Botryosphaeria mamane, an Endophytic Fungus Isolated from Bixa orellana’, Chemistry and Biodiversity 2019, 16, 10.1002/cbdv.201800485.
R. Pacheco-Tapia, P. Vásquez-Ocmín, S. Duthen, S. Ortíz, P. Jargeat, C. Amasifuen, M. Haddad, M. Vansteelandt, ‘Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids’, Fungal Biology 2022, DOI 10.1016/J.FUNBIO.2022.02.005.
F. Barakat, M. Vansteelandt, A. Triastuti, P. Jargeat, D. Jacquemin, J. Graton, K. Mejia, B. Cabanillas, L. Vendier, J.-L. Stigliani, M. Haddad, N. Fabre, ‘Thiodiketopiperazines with two spirocyclic centers extracted from Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana L.’, Phytochemistry 2019, 158, 142-148.
F. Tugizimana, A. T. Djami-Tchatchou, J. F. Fahrmann, P. A. Steenkamp, L. A. Piater, I. A. Dubery, ‘Time-resolved decoding of metabolic signatures of in vitro growth of the hemibiotrophic pathogen Colletotrichum sublineolum’, Sci. Rep. 2019, 9, 1-12.
D. H. Scharf, A. Habel, T. Heinekamp, A. A. Brakhage, C. Hertweck, ‘Opposed effects of enzymatic gliotoxin N - And S -methylations’, J. the American Chemical Society 2014, 136, 11674-11679.
R. Schmid, D. Petras, L.-F. Nothias, M. Wang, A. T. Aron, A. Jagels, H. Tsugawa, J. Rainer, M. Garcia-Aloy, K. Dührkop, A. Korf, T. Pluskal, Z. Kameník, A. K. Jarmusch, A. M. Caraballo-Rodríguez, K. C. Weldon, M. Nothias-Esposito, A. A. Aksenov, A. Bauermeister, A. Albarracin Orio, C. O. Grundmann, F. Vargas, I. Koester, J. M. Gauglitz, E. C. Gentry, Y. Hövelmann, S. A. Kalinina, M. A. Pendergraft, M. Panitchpakdi, R. Tehan, A. Le Gouellec, G. Aleti, H. Mannochio Russo, B. Arndt, F. Hübner, H. Hayen, H. Zhi, M. Raffatellu, K. A. Prather, L. I. Aluwihare, S. Böcker, K. L. McPhail, H.-U. Humpf, U. Karst, P. C. Dorrestein, ‘Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment’, Nat. Commun. 2021, 12, 3832.
S.-B. Kim, S.-H. Kim, K.-R. Lee, J.-O. Shim, M.-W. Lee, M.-J. Shim, U.-Y. Lee, T.-S. Lee, ‘The Optimal Culture Conditions for the Mycelial Growth of Oudemansiella radicata’, Mycobiology 2005, 33, 230.
R. Kalra, X. A. Conlan, M. Goel, ‘Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi’, Front. Chem. 2020, 8, 1-23.
C. Berthelot, Y. Perrin, C. Leyval, D. Blaudez, ‘Melanization and ageing are not drawbacks for successful agro-transformation of dark septate endophytes’, Fungal Biology 2017, 121, 652-663.
L. Dufossé, M. Fouillaud, Y. Caro, S. A. S. Mapari, N. Sutthiwong, ‘Filamentous fungi are large-scale producers of pigments and colorants for the food industry’, Curr. Opin. Biotechnol. 2014, 26, 56-61.
S. Madla, P. Kittakoop, P. Wongsa, ‘Optimization of culture conditions for production of antimalarial menisporopsin A by the seed fungus Menisporopsis theobromae BCC 4162’, Lett. Appl. Microbiol. 2006, 43, 548-553.
S. S. M. Soliman, M. N. Raizada, ‘Darkness: A crucial factor in Fungal Taxol production’, Front. Microbiol. 2018, 9, 1-7.
D. D. A. Vilar, M. S. D. A. Vilar, T. F. A. D. L. E. Moura, F. N. Raffin, M. R. De Oliveira, C. F. D. O. Franco, P. F. De Athayde-Filho, M. D. F. F. M. Diniz, J. M. Barbosa-Filho, ‘Traditional Uses, chemical constituents, and biological activities of Bixa Orellana L.: A review’, Scientific World Journal 2014, 2014, 10.1155/2014/857292.
D. V. Faria, L. N. de F. Correia, M. V. C. Souza, A. M. Ríos-Ríos, C. E. Vital, D. S. Batista, M. G. C. Costa, W. C. Otoni, ‘Irradiance and light quality affect two annatto (Bixa orellana L.) cultivars with contrasting bixin production’, J. Photochemistry and Photobiology B: Biology 2019, 197, 111549.
P. Borgman, R. D. Lopez, A. L. Lane, ‘The expanding spectrum of diketopiperazine natural product biosynthetic pathways containing cyclodipeptide synthases’, Organic and Biomolecular Chemistry 2019, 17, 2305-2314.
A. A. Brakhage, ‘Regulation of fungal secondary metabolism’, Nat. Rev. Microbiol. 2013, 11, 21-32.
D. E. Gardner, ‘Botryosphaeria mamane sp. nov. associated with witches’-brooms on the endemic forest tree Sophora chrysophylla in Hawaii’, Mycologia 1997, 89, 298-303.
W. Pongcharoen, V. Rukachaisirikul, S. Phongpaichit, J. Sakayaroj, ‘A new dihydrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU−M76’, Chemical and Pharmaceutical Bulletin 2007, 55, 1404-1405.
G. St-Germain, R. Summerbell, Identifying Filamentous Fungi: A Clinical Laboratory Handbook, 2003.
R. Thorneley, ‘Metal ions and bacteria’, Trends Biotechnol. 1990, 8, 298-299.
W. Jiang, Y. Zhong, L. Shen, X. Wu, Y. Ye, C.-T. Chen, B. Wu, ‘Stress-driven Discovery of Natural Products from Extreme Marine Environment- Kueishantao Hydrothermal Vent, a Case Study of Metal Switch Valve’, Curr. Org. Chem. 2014, 18, 925-934.
B. Tudzynski, ‘Nitrogen regulation of fungal secondary metabolism in fungi’, Front. Microbiol. 2014, 5, 10.3389/fmicb.2014.00656.
J. Amich, ‘Sulfur Metabolism as a Promising Source of New Antifungal Targets’, J. Fungi 2022, 8, 295.
A. M. Traynor, K. J. Sheridan, G. W. Jones, J. A. Calera, S. Doyle, ‘Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications’, Front. Microbiol. 2019, 10, 10.3389/fmicb.2019.02859.
Z. Song, Y. Hou, Q. Yang, X. Li, S. Wu, ‘Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review’, Mar. Drugs 2021, 19, 403.
X. Wang, Y. Li, X. Zhang, D. Lai, L. Zhou, ‘Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi’, Molecules 2017, 22, 2026.
S. Mondal, S. Majumdar, in Advances in Endophytic Fungal Research, 2019, pp. 171-181.
N. Venkatesh, N. P. Keller, ‘Mycotoxins in Conversation With Bacteria and Fungi’, Front. Microbiol. 2019, 10, 1-10.
M. R. Bofinger, L. S. de Sousa, J. E. N. Fontes, A. J. Marsaioli, ‘Diketopiperazines as Cross-Communication Quorum - Sensing Signals between Cronobacter sakazakii and Bacillus cereus’, ACS Omega 2017, 2, 1003-1008.
J. Zhu, Y. Zhang, J. Deng, H. Jiang, L. Zhuang, W. Ye, J. Ma, J. Jiang, L. Feng, ‘Diketopiperazines Synthesis Gene in Shewanella baltica and Roles of Diketopiperazines and Resveratrol in Quorum Sensing’, J. Agricultural and Food Chemistry 2019, 67, 12013-12025.
M. E. Rateb, I. Hallyburton, W. E. Houssen, A. T. Bull, M. Goodfellow, R. Santhanam, M. Jaspars, R. Ebel, ‘Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture’, RSC Adv. 2013, 3, 14444.
P. Shannon, ‘Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks’, Genome Res. 2003, 13, 2498-2504.
J. Chong, D. S. Wishart, J. Xia, ‘Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis’, Current Protocols in Bioinformatics 2019, 68, 10.1002/cpbi.86.

Auteurs

Romina Pacheco-Tapia (R)

UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France.
Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú.

Sergio Ortíz (S)

Therapeutic Innovation Laboratory UMR CNRS 7200, Faculty of Pharmacy, Université de Strasbourg, Strasbourg, France.

Patricia Jargeat (P)

Laboratoire Evolution et Diversité Biologique UMR 5174, Université de Toulouse, CNRS, IRD, France.

Carlos Amasifuen (C)

Instituto Nacional de Innovación Agraria, Dirección de Recursos Genéticos y Biotecnología, Avenida La Molina 1981, Lima, 15024, Perú.
Present address: Epigénomique Fonctionnelle et Physiologie Moléculaire Du Diabète et Maladies Associées UMR 1283/8199, Université de Lille, Lille, France.

Marieke Vansteelandt (M)

UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France.

Mohamed Haddad (M)

UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Plant Diseases Paenibacillus Paenibacillus polymyxa Biological Control Agents Fusarium
Ascomycota Cenchrus Chromosomes, Fungal Genome, Fungal Plant Diseases

Classifications MeSH