Near complete assembly of Pyricularia penniseti infecting Cenchrus grass identified its eight core chromosomes.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
28
05
2024
accepted:
23
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Fungi from the Pyricularia genus cause blast disease in many economically important crops and grasses, such as wheat, rice, and Cenchrus grass JUJUNCAO. Structure variation associated with the gain and loss of effectors contributes largely to the adaptive evolution of this fungus towards diverse host plants. A telomere-to-telomere genome assembly would facilitate the identification of genome-wide structural variations through comparative genomics. Here, we report a telomere-to-telomere, near-complete genome assembly of a Pyricularia penniseti isolate JC-1 infecting JUJUNCAO. The assembly consists of eight core chromosomes and two supernumerary chromosomes, named mini1 and mini2, spanning 42.1 Mb. We annotated 12,156 protein-coding genes and identified 4.54% of the genome as repetitive sequences. The two supernumerary chromosomes contained fewer genes and more repetitive sequences than the core chromosomes. Our genome and results provide valuable resources for the future study in genome evolution, structure variation and host adaptation of the Pyricularia fungus.
Identifiants
pubmed: 39482310
doi: 10.1038/s41597-024-04035-z
pii: 10.1038/s41597-024-04035-z
doi:
Types de publication
Journal Article
Dataset
Langues
eng
Sous-ensembles de citation
IM
Pagination
1186Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32172365
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32272513
Informations de copyright
© 2024. The Author(s).
Références
Klaubauf, S. et al. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in mycology 79, 85–120, https://doi.org/10.1016/j.simyco.2014.09.004 (2014).
doi: 10.1016/j.simyco.2014.09.004
pmcid: 4255532
Zhang, N. et al. Generic names in Magnaporthales. IMA fungus 7, 155–159, https://doi.org/10.5598/imafungus.2016.07.01.09 (2016).
doi: 10.5598/imafungus.2016.07.01.09
pmcid: 4941683
Valent, B. The impact of blast disease: past, present, and future. Methods in molecular biology (Clifton, N.J.) 2356, 1–18, https://doi.org/10.1007/978-1-0716-1613-0_1 (2021).
doi: 10.1007/978-1-0716-1613-0_1
Giraldo, M. C. & Valent, B. Filamentous plant pathogen effectors in action. Nature reviews. Microbiology 11, 800–814, https://doi.org/10.1038/nrmicro3119 (2013).
doi: 10.1038/nrmicro3119
Oliveira-Garcia, E., Yan, X., Oses-Ruiz, M., de Paula, S. & Talbot, N. J. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. The New phytologist 241, 1007–1020, https://doi.org/10.1111/nph.19446 (2024).
doi: 10.1111/nph.19446
Wei, Y. Y., Liang, S., Zhu, X. M., Liu, X. H. & Lin, F. C. Recent advances in effector research of Magnaporthe oryzae. Biomolecules 13, https://doi.org/10.3390/biom13111650 (2023).
Bao, J. et al. PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae. Molecular plant 10, 1465–1468, https://doi.org/10.1016/j.molp.2017.08.008 (2017).
doi: 10.1016/j.molp.2017.08.008
Yoshida, K. et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC genomics 17, 370, https://doi.org/10.1186/s12864-016-2690-6 (2016).
doi: 10.1186/s12864-016-2690-6
pmcid: 4870811
Lin, L. et al. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio, e0008624, https://doi.org/10.1128/mbio.00086-24 (2024).
Langner, T., Białas, A. & Kamoun, S. The blast fungus decoded: genomes in flux. mBio 9, https://doi.org/10.1128/mBio.00571-18 (2018).
Gladieux, P. et al. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9, https://doi.org/10.1128/mBio.01219-17 (2018).
Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986, https://doi.org/10.1038/nature03449 (2005).
doi: 10.1038/nature03449
Dong, Y. et al. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS pathogens 11, e1004801, https://doi.org/10.1371/journal.ppat.1004801 (2015).
doi: 10.1371/journal.ppat.1004801
Zhong, Z. et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. The ISME journal 12, 1867–1878, https://doi.org/10.1038/s41396-018-0100-6 (2018).
doi: 10.1038/s41396-018-0100-6
Wang, Y. et al. Genome sequence of Magnaporthe oryzae EA18 virulent to multiple widely used rice varieties. Molecular plant-microbe interactions: MPMI 35, 727–730, https://doi.org/10.1094/mpmi-01-22-0030-a (2022).
doi: 10.1094/mpmi-01-22-0030-a
Peng, Z. et al. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS genetics 15, e1008272, https://doi.org/10.1371/journal.pgen.1008272 (2019).
doi: 10.1371/journal.pgen.1008272
Langner, T. et al. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS genetics 17, e1009386, https://doi.org/10.1371/journal.pgen.1009386 (2021).
doi: 10.1371/journal.pgen.1009386
Gómez Luciano, L. B. et al. Blast fungal genomes show frequent chromosomal changes, gene gains and losses, and effector gene turnover. Molecular biology and evolution 36, 1148–1161, https://doi.org/10.1093/molbev/msz045 (2019).
doi: 10.1093/molbev/msz045
Li, Z. et al. First telomere-to-telomere gapless assembly of the rice blast fungus Pyricularia oryzae. Scientific data 11, 380, https://doi.org/10.1038/s41597-024-03209-z (2024).
doi: 10.1038/s41597-024-03209-z
pmcid: 11016069
Zheng, H. et al. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. Plant communications 4, 100633, https://doi.org/10.1016/j.xplc.2023.100633 (2023).
doi: 10.1016/j.xplc.2023.100633
pmcid: 10504591
Zheng, H. et al. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC genomics 19, 927, https://doi.org/10.1186/s12864-018-5222-8 (2018).
doi: 10.1186/s12864-018-5222-8
pmcid: 6293661
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27, 722–736, https://doi.org/10.1101/gr.215087.116 (2017).
doi: 10.1101/gr.215087.116
pmcid: 5411767
Skinner, D. Z. et al. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87, 545–557, https://doi.org/10.1007/bf00221877 (1993).
doi: 10.1007/bf00221877
Rehmeyer, C. et al. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic acids research 34, 4685–4701, https://doi.org/10.1093/nar/gkl588 (2006).
doi: 10.1093/nar/gkl588
pmcid: 1635262
Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics (Oxford, England) 36, 2253–2255, https://doi.org/10.1093/bioinformatics/btz891 (2020).
doi: 10.1093/bioinformatics/btz891
Brigati, C., Kurtz, S., Balderes, D., Vidali, G. & Shore, D. An essential yeast gene encoding a TTAGGG repeat-binding protein. Molecular and cellular biology 13, 1306–1314, https://doi.org/10.1128/mcb.13.2.1306-1314.1993 (1993).
doi: 10.1128/mcb.13.2.1306-1314.1993
pmcid: 359016
Kanzaki, H. et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant journal: for cell and molecular biology 72, 894–907, https://doi.org/10.1111/j.1365-313X.2012.05110.x (2012).
doi: 10.1111/j.1365-313X.2012.05110.x
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England) 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).
doi: 10.1093/bioinformatics/btv351
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR genomics and bioinformatics 3, lqaa108, https://doi.org/10.1093/nargab/lqaa108 (2021).
doi: 10.1093/nargab/lqaa108
pmcid: 7787252
Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics (Oxford, England) 27, 757–763, https://doi.org/10.1093/bioinformatics/btr010 (2011).
doi: 10.1093/bioinformatics/btr010
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR genomics and bioinformatics 2, lqaa026, https://doi.org/10.1093/nargab/lqaa026 (2020).
doi: 10.1093/nargab/lqaa026
pmcid: 7222226
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).
doi: 10.1073/pnas.1921046117
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. 25, 4.10.11-14.10.14, https://doi.org/10.1002/0471250953.bi0410s25 (2009).
Orbach, M. J., Chumley, F. G. & Valent, B. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Molecular Plant-Microbe Interactions 9, 261–271 (1996).
doi: 10.1094/MPMI-9-0261
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 40, e49, https://doi.org/10.1093/nar/gkr1293 (2012).
doi: 10.1093/nar/gkr1293
pmcid: 3326336
Chen, C. et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular plant 16, 1733–1742, https://doi.org/10.1016/j.molp.2023.09.010 (2023).
doi: 10.1016/j.molp.2023.09.010
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207900 (2024).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR30207899 (2024).
NCBI Genbank https://identifiers.org/ncbi/insdc:JBGNXE000000000 (2024).