Single-cell Sequence Analysis Combined with Multiple Machine Learning to Identify Markers in Sepsis Patients: LILRA5.
LILRA5
machine learning
molecular docking
sepsis
single cell
Journal
Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
28
12
2022
accepted:
06
03
2023
revised:
04
03
2023
medline:
21
7
2023
pubmed:
16
3
2023
entrez:
15
3
2023
Statut:
ppublish
Résumé
Sepsis is a disease with a very high mortality rate, mainly involving an immune-dysregulated response due to bacterial infection. Most studies are currently limited to the whole blood transcriptome level; however, at the single cell level, there is still a great deal unknown about specific cell subsets and disease markers. We obtained 29 peripheral blood single-cell sequencing data, including 66,283 cells from 10 confirmed samples of sepsis infection and 19 healthy samples. Cells related to the sepsis phenotype were identified and characterized by the "scissor" method. The regulatory relationships of sepsis-related phenotype cells in the cellular communication network were clarified using the "cell chat" method. The least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest (RF) were used to identify sepsis signature genes of diagnostic value. External validation was performed using multiple datasets from the GEO database (GSE28750, GSE185263, GSE57065) and 40 clinical samples. Bayesian algorithm was used to calculate the regulatory network of LILRA5 co-expressed genes. The stability of atenolol-targeting LILRA5 was determined by molecular docking techniques. Ultimately, action trajectory and survival analyses demonstrate the effectiveness of atenolol-targeted LILRA5 in treating patients with sepsis. We successfully identified 1215 healthy phenotypic cells and 462 sepsis phenotypic cells. We focused on 447 monocytes of the sepsis phenotype. Among the cellular communications, there were a large number of differences between these cells and other immune cells showing a significant inflammatory phenotype compared to the healthy phenotypic cells. Together, the three machine learning algorithms identified the LILRA5 marker gene in sepsis patients, and validation results from multiple external datasets as well as real-world clinical samples demonstrated the robust diagnostic performance of LILRA5. The AUC values of LILRA5 in the external datasets GSE28750, GSE185263, and GSE57065 could reach 0.875, 0.940, and 0.980, in that order. Bayesian networks identified a large number of unknown regulatory relationships for LILRA5 co-expression. Molecular docking results demonstrated the possibility of atenolol targeting LILRA5 for the treatment of sepsis. Behavioral trajectory analysis and survival analysis demonstrate that atenolol has a desirable therapeutic effect. LILRA5 is a marker gene in sepsis patients, and atenolol can stably target LILRA5.
Identifiants
pubmed: 36920635
doi: 10.1007/s10753-023-01803-8
pii: 10.1007/s10753-023-01803-8
doi:
Substances chimiques
Atenolol
50VV3VW0TI
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1236-1254Subventions
Organisme : Hebei Medical University Innovation Grant Program
ID : XCXZZB202301
Organisme : Hebei Provincial Department of Education Grants for Cultivating Innovation Ability of Graduate Students at the Provincial Level
ID : CXZZBS2023107
Organisme : Natural Science Foundation of Hebei Province
ID : C2021206011
Organisme : Hebei Key R&D Program Project Special Project for the Construction of Beijing-Tianjin-Hebei Collaborative Innovation Community
ID : 22347702D
Organisme : National Natural Science Foundation of China
ID : 81971474
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Arina, Pietro, and Mervyn Singer. 2021. Pathophysiology of sepsis. Current Opinion in Anaesthesiology 34: 77–84. https://doi.org/10.1097/ACO.0000000000000963 .
doi: 10.1097/ACO.0000000000000963
pubmed: 33652454
Downes, Kevin J., Julie C. Fitzgerald, and Scott L. Weiss. 2020. Utility of procalcitonin as a biomarker for sepsis in children. Edited by Colleen Suzanne Kraft. Journal of Clinical Microbiology 58: e01851-e1919. https://doi.org/10.1128/JCM.01851-19 .
doi: 10.1128/JCM.01851-19
pubmed: 32350044
pmcid: 7315022
Stocker, Martin, Wendy van Herk, Salhab el Helou, Sourabh Dutta, Frank A B A. Schuerman, Rita K. van den Tooren-de, Jantien W. Groot, Wieringa, et al. 2021. C-Reactive protein, procalcitonin, and white blood count to rule out neonatal early-onset sepsis within 36 hours: A secondary analysis of the neonatal procalcitonin intervention study. Clinical Infectious Diseases 73: e383–e390. https://doi.org/10.1093/cid/ciaa876 .
doi: 10.1093/cid/ciaa876
pubmed: 32881994
Chakraborty, Rebanta K., and Bracken Burns. 2022. Systemic inflammatory response syndrome. In StatPearls. Treasure Island (FL): StatPearls Publishing.
Yende, Sachin, John A. Kellum, Victor B. Talisa, Octavia M. Peck Palmer, Chung-Chou H. Chang, Michael R. Filbin, Nathan I. Shapiro, et al. 2019. Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA network open 2: e198686. https://doi.org/10.1001/jamanetworkopen.2019.8686 .
Barichello, Tatiana, Jaqueline S. Generoso, Diogo Dominguini, Emily Córneo, Vijayasree V. Giridharan, Taha A. Sahrapour, Lutiana R. Simões, et al. 2021. Postmortem evidence of brain inflammatory markers and injury in septic patients: A systematic review. Critical Care Medicine Publish Ahead of Print. https://doi.org/10.1097/CCM.0000000000005307 .
Kumar, Sushil, Harshad Ingle, Durbaka Vijaya Raghava. Prasad, and Himanshu Kumar. 2013. Recognition of bacterial infection by innate immune sensors. Critical Reviews in Microbiology 39: 229–246. https://doi.org/10.3109/1040841X.2012.706249 .
doi: 10.3109/1040841X.2012.706249
pubmed: 22866947
Heckenberg, Sebastiaan G. B., Matthijs C. Brouwer, and Diederik van de Beek. 2014. Bacterial meningitis. Handbook of Clinical Neurology 121: 1361–1375. https://doi.org/10.1016/B978-0-7020-4088-7.00093-6 .
doi: 10.1016/B978-0-7020-4088-7.00093-6
pubmed: 24365425
Mook-Kanamori, Barry B., Madelijn Geldhoff, Tom van der Poll, and Diederik van de Beek. 2011. Pathogenesis and pathophysiology of pneumococcal meningitis. Clinical Microbiology Reviews 24: 557–591. https://doi.org/10.1128/CMR.00008-11 .
doi: 10.1128/CMR.00008-11
pubmed: 21734248
pmcid: 3131058
Sellner, Johann, Martin G. Täuber, and Stephen L. Leib. 2010. Pathogenesis and pathophysiology of bacterial CNS infections. Handbook of Clinical Neurology 96: 1–16. https://doi.org/10.1016/S0072-9752(09)96001-8 .
doi: 10.1016/S0072-9752(09)96001-8
pubmed: 20109671
Iwasaki, Akiko, and Ruslan Medzhitov. 2010. Regulation of adaptive immunity by the innate immune system. Science (New York, N.Y.) 327: 291–295. https://doi.org/10.1126/science.1183021 .
Kataoka, Hiroshi, Hajime Kono, Zubin Patel, Yoshitaka Kimura, and Kenneth L. Rock. 2014. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PloS One 9: e104741. https://doi.org/10.1371/journal.pone.0104741 .
Kigerl, Kristina A., Juan Pablo, W. de Rivero Vaccari, Dalton Dietrich, Phillip G. Popovich, and Robert W. Keane. 2014. Pattern recognition receptors and central nervous system repair. Experimental Neurology 258: 5–16. https://doi.org/10.1016/j.expneurol.2014.01.001 .
doi: 10.1016/j.expneurol.2014.01.001
pubmed: 25017883
pmcid: 4974939
Wiersinga, Willem Joost, Stije J. Leopold, Duncan R. Cranendonk, and Tom van der Poll. 2014. Host innate immune responses to sepsis. Virulence 5: 36–44. https://doi.org/10.4161/viru.25436 .
doi: 10.4161/viru.25436
pubmed: 23774844
Generoso, Jaqueline S., Vijayasree V. Giridharan, Juneyoung Lee, Danielle Macedo, and Tatiana Barichello. 2021. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Revista Brasileira De Psiquiatria (Sao Paulo, Brazil: 1999) 43: 293–305. https://doi.org/10.1590/1516-4446-2020-0987 .
Barichello, Tatiana, Pavani Sayana, Vijayasree V. Giridharan, Anithachristy S. Arumanayagam, Boomadevi Narendran, Amanda Della Giustina, Fabricia Petronilho, João. Quevedo, and Felipe Dal-Pizzol. 2019. Long-term cognitive outcomes after sepsis: A translational systematic review. Molecular Neurobiology 56: 186–251. https://doi.org/10.1007/s12035-018-1048-2 .
doi: 10.1007/s12035-018-1048-2
pubmed: 29687346
Korsunsky, Ilya, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-ru Loh, and Soumya Raychaudhuri. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods 16: 1289–1296. https://doi.org/10.1038/s41592-019-0619-0 .
doi: 10.1038/s41592-019-0619-0
pubmed: 31740819
pmcid: 6884693
Sun, Duanchen, Xiangnan Guan, Amy E. Moran, Wu. Ling-Yun, David Z. Qian, Pepper Schedin, Mu-Shui. Dai, et al. 2022. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nature Biotechnology 40: 527–538. https://doi.org/10.1038/s41587-021-01091-3 .
doi: 10.1038/s41587-021-01091-3
pubmed: 34764492
Jin, Suoqin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-Hsiang. Kuan, Peggy Myung, Maksim V. Plikus, and Qing Nie. 2021. Inference and analysis of cell-cell communication using Cell Chat. Nature Communications 12: 1088. https://doi.org/10.1038/s41467-021-21246-9 .
doi: 10.1038/s41467-021-21246-9
pubmed: 33597522
pmcid: 7889871
Wu, Yingcheng, Shuaixi Yang, Jiaqiang Ma, Zechuan Chen, Guohe Song, Dongning Rao, Yifei Cheng, et al. 2022. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discovery 12: 134–153. https://doi.org/10.1158/2159-8290.CD-21-0316 .
doi: 10.1158/2159-8290.CD-21-0316
pubmed: 34417225
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33. https://doi.org/10.18637/jss.v033.i01 .
Robin, Xavier, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique. Lisacek, Jean-Charles. Sanchez, and Markus Müller. 2011. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77. https://doi.org/10.1186/1471-2105-12-77 .
doi: 10.1186/1471-2105-12-77
pubmed: 21414208
pmcid: 3068975
Sato, Noriaki, Yoshinori Tamada, Yu. Guangchuang, and Yasushi Okuno. 2022. CBNplot : Bayesian network plots for enrichment analysis. Edited by Zhiyong Lu. Bioinformatics 38: 2959–2960. https://doi.org/10.1093/bioinformatics/btac175 .
doi: 10.1093/bioinformatics/btac175
Singer, Mervyn, Clifford S. Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315: 801. https://doi.org/10.1001/jama.2016.0287 .
doi: 10.1001/jama.2016.0287
pubmed: 26903338
pmcid: 4968574
Reyes, Miguel, Michael R. Filbin, Roby P. Bhattacharyya, Kianna Billman, Thomas Eisenhaure, Deborah T. Hung, Bruce D. Levy, et al. 2020. An immune-cell signature of bacterial sepsis. Nature Medicine 26: 333–340. https://doi.org/10.1038/s41591-020-0752-4 .
doi: 10.1038/s41591-020-0752-4
pubmed: 32066974
pmcid: 7235950
Young, Matthew D., Thomas J. Mitchell, Felipe A. Vieira, Maxine G. B. Braga, Benjamin J. Tran, John R. Stewart, Grace Collord Ferdinand, et al. 2018. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361: 594–599. https://doi.org/10.1126/science.aat1699 .
doi: 10.1126/science.aat1699
pubmed: 30093597
pmcid: 6104812
Wang, Bo., Junjie Zhu, Emma Pierson, Daniele Ramazzotti, and Serafim Batzoglou. 2017. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature Methods 14: 414–416. https://doi.org/10.1038/nmeth.4207 .
doi: 10.1038/nmeth.4207
pubmed: 28263960
Sinha, Debajyoti, Akhilesh Kumar, Himanshu Kumar, Sanghamitra Bandyopadhyay, and Debarka Sengupta. 2018. dropClust: Efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Research 46: e36–e36. https://doi.org/10.1093/nar/gky007 .
doi: 10.1093/nar/gky007
pubmed: 29361178
pmcid: 5888655
Villani, Alexandra-Chloé, Rahul Satija, Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James Fletcher, Morgane Griesbeck, et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356: eaah4573. https://doi.org/10.1126/science.aah4573 .
Perretti, Mauro, and Fulvio D’Acquisto. 2009. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nature Reviews Immunology 9: 62–70. https://doi.org/10.1038/nri2470 .
doi: 10.1038/nri2470
pubmed: 19104500
Ness, Traci L., Kristin J. Carpenter, Jillian L. Ewing, Craig J. Gerard, Cory M. Hogaboam, and Steven L. Kunkel. 2004. CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune responses during sepsis. The Journal of Immunology 173: 6938–6948. https://doi.org/10.4049/jimmunol.173.11.6938 .
doi: 10.4049/jimmunol.173.11.6938
pubmed: 15557190
He, Min, Richard Horuk, Shabbir M. Moochhala, and Madhav Bhatia. 2007. Treatment with BX471, a CC chemokine receptor 1 antagonist, attenuates systemic inflammatory response during sepsis. American Journal of Physiology-Gastrointestinal and Liver Physiology 292: G1173–G1180. https://doi.org/10.1152/ajpgi.00420.2006 .
Parker, Margaret M., James H. Shelhamer, Charles Natanson, David W. Alling, and Joseph E. Parrillo. 1987. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: Heart rate as an early predictor of prognosis. Critical Care Medicine 15: 923–929. https://doi.org/10.1097/00003246-198710000-00006 .
doi: 10.1097/00003246-198710000-00006
pubmed: 3652707
Kuo, Ming-Jen, Ruey-Hsing Chou, Ya-Wen Lu, Jiun-Yu Guo, Yi-Lin Tsai, Cheng-Hsueh Wu, Po-Hsun Huang, and Shing-Jong Lin. 2021. Premorbid β1-selective (but not non-selective) β-blocker exposure reduces intensive care unit mortality among septic patients. Journal of Intensive Care 9: 40. https://doi.org/10.1186/s40560-021-00553-9 .
Barichello, Tatiana, Jaqueline S. Generoso, Mervyn Singer, and Felipe Dal-Pizzol. 2022. Biomarkers for sepsis: More than just fever and leukocytosis-a narrative review. Critical Care (London, England) 26: 14. https://doi.org/10.1186/s13054-021-03862-5 .
doi: 10.1186/s13054-021-03862-5
pubmed: 34991675
Fu, Guang, Meihong Deng, Matthew D. Neal, Timothy R. Billiar, and Melanie J. Scott. 2021. Platelet–monocyte aggregates: Understanding mechanisms and functions in sepsis. Shock 55: 156–166. https://doi.org/10.1097/SHK.0000000000001619 .
Vogel, Sebastian, Rebecca Bodenstein, Qiwei Chen, Susanne Feil, Robert Feil, Johannes Rheinlaender, Tilman E. Schäffer, et al. 2015. Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of Clinical Investigation 125: 4638–4654. https://doi.org/10.1172/JCI81660 .
doi: 10.1172/JCI81660
pubmed: 26551681
pmcid: 4665785
Vogel, Sebastian, Dominik Rath, Oliver Borst, Andreas Mack, Patricia Loughran, Michael T. Lotze, Matthew D. Neal, Timothy R. Billiar, and Meinrad Gawaz. 2016. Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes. Biochemical and Biophysical Research Communications 478: 143–148. https://doi.org/10.1016/j.bbrc.2016.07.078 .
doi: 10.1016/j.bbrc.2016.07.078
pubmed: 27449608
pmcid: 4976924
Zhou, Hui, Meihong Deng, Yingjie Liu, Chenxuan Yang, Rosemary Hoffman, Jingjiao Zhou, Patricia A. Loughran, Melanie J. Scott, Matthew D. Neal, and Timothy R. Billiar. 2018. Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Advances 2: 638–648. https://doi.org/10.1182/bloodadvances.2017011817 .
doi: 10.1182/bloodadvances.2017011817
pubmed: 29563120
pmcid: 5873229
Morrell, Craig N., Angela A. Aggrey, Lesley M. Chapman, and Kristina L. Modjeski. 2014. Emerging roles for platelets as immune and inflammatory cells. Blood 123: 2759–2767. https://doi.org/10.1182/blood-2013-11-462432 .
doi: 10.1182/blood-2013-11-462432
pubmed: 24585776
pmcid: 4007605
Kral, Julia Barbara, Waltraud Cornelia Schrottmaier, Manuel Salzmann, and Alice Assinger. 2016. Platelet Interaction with innate immune cells. Transfusion Medicine and Hemotherapy: Offizielles Organ Der Deutschen Gesellschaft Fur Transfusionsmedizin Und Immunhamatologie 43: 78–88. https://doi.org/10.1159/000444807 .
doi: 10.1159/000444807
pubmed: 27226790
Semple, John W., Joseph E. Italiano, and John Freedman. 2011. Platelets and the immune continuum. Nature Reviews. Immunology 11: 264–274. https://doi.org/10.1038/nri2956 .
doi: 10.1038/nri2956
pubmed: 21436837
Weyrich, Andrew S., and Guy A. Zimmerman. 2004. Platelets: Signaling cells in the immune continuum. Trends in Immunology 25: 489–495. https://doi.org/10.1016/j.it.2004.07.003 .
doi: 10.1016/j.it.2004.07.003
pubmed: 15324742
Goasguen, Jean E., John M. Bennett, Barbara J. Bain, Teresa Vallespi, Richard Brunning, Ghulam J. Mufti, and International Working Group on Morphology of Myelodysplastic Syndrome. 2009. Morphological evaluation of monocytes and their precursors. Haematologica 94: 994–997. https://doi.org/10.3324/haematol.2008.005421 .
doi: 10.3324/haematol.2008.005421
Bomans, Katharina, Judith Schenz, Isabella Sztwiertnia, Dominik Schaack, Markus Alexander Weigand, and Florian Uhle. 2018. Sepsis induces a long-lasting state of trained immunity in bone marrow monocytes. Frontiers in Immunology 9: 2685. https://doi.org/10.3389/fimmu.2018.02685 .
doi: 10.3389/fimmu.2018.02685
pubmed: 30510555
pmcid: 6254543
Shen, Tian, Xingjian Cao, Junwei Shi, Yu Yu, Yihua Zhu, and Delin Gu. 2018. The morphological changes of monocytes in peripheral blood as a potential indicator for predicting active pulmonary tuberculosis. Clinica Chimica Acta; International Journal of Clinical Chemistry 481: 189–192. https://doi.org/10.1016/j.cca.2018.03.015 .
Shi, Chao, and Eric G. Pamer. 2011. Monocyte recruitment during infection and inflammation. Nature Reviews. Immunology 11: 762–774. https://doi.org/10.1038/nri3070 .
doi: 10.1038/nri3070
pubmed: 21984070
pmcid: 3947780
Fingerle, G., A. Pforte, B. Passlick, M. Blumenstein, M. Ströbel, and H.W. Ziegler-Heitbrock. 1993. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 82: 3170–3176.
doi: 10.1182/blood.V82.10.3170.3170
pubmed: 7693040
Wong, Kok Loon, Wei Hseun Yeap, June Jing Yi. Tai, Siew Min Ong, Truong Minh Dang, and Siew Cheng Wong. 2012. The three human monocyte subsets: Implications for health and disease. Immunologic Research 53: 41–57. https://doi.org/10.1007/s12026-012-8297-3 .
doi: 10.1007/s12026-012-8297-3
pubmed: 22430559
Margaria, Jean Piero, Lucia Moretta, Jose Carlos Alves-Filho, and Emilio Hirsch. 2022. PI3K Signaling in mechanisms and treatments of pulmonary fibrosis following sepsis and acute lung injury. Biomedicines 10: 756. https://doi.org/10.3390/biomedicines10040756 .
doi: 10.3390/biomedicines10040756
pubmed: 35453505
pmcid: 9028704
Qiu, Peng, Yang Liu, and Jin Zhang. 2019. Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation 42: 6–19. https://doi.org/10.1007/s10753-018-0890-8 .
doi: 10.1007/s10753-018-0890-8
pubmed: 30194660
Esmon, C.T. 2001. Role of coagulation inhibitors in inflammation. Thrombosis and Haemostasis 86: 51–56.
doi: 10.1055/s-0037-1616200
pubmed: 11487041
Aykac, Asli, Ahmet Özer Şehirli, and M. Zafer Gören. 2020. Evaluation of the effect of prazosin treatment on α-2c adrenoceptor and apoptosis protein levels in the predator scent-induced rat model of post-traumatic stress disorder. Journal of Molecular Neuroscience 70: 1120–1129. https://doi.org/10.1007/s12031-020-01518-7 .
doi: 10.1007/s12031-020-01518-7
pubmed: 32133592
Ackland, Gareth L., Song T. Yao, Alain Rudiger, Alex Dyson, Ray Stidwill, Dmitry Poputnikov, Mervyn Singer, and Alexander V. Gourine. 2010. Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Critical Care Medicine 38: 388–394. https://doi.org/10.1097/CCM.0b013e3181c03dfa .
doi: 10.1097/CCM.0b013e3181c03dfa
pubmed: 19829100
Calzavacca, Paolo, Yugeesh R. Lankadeva, Simon R. Bailey, Michael Bailey, Rinaldo Bellomo, and Clive N. May. 2014. Effects of selective β1-adrenoceptor blockade on cardiovascular and renal function and circulating cytokines in ovine hyperdynamic sepsis. Critical Care (London, England) 18: 610. https://doi.org/10.1186/s13054-014-0610-1 .
doi: 10.1186/s13054-014-0610-1
pubmed: 25413250
Bedet, Alexandre, Guillaume Voiriot, Julien Ternacle, Elisabeth Marcos, Serge Adnot, Geneviève Derumeaux, and Armand Mekontso Dessap. 2020. Heart rate control during experimental sepsis in mice: Comparison of ivabradine and β-blockers. Anesthesiology 132: 321–329. https://doi.org/10.1097/ALN.0000000000003045 .
doi: 10.1097/ALN.0000000000003045
pubmed: 31939847