Electrochemical Manufacturing Routes for Organic Chemical Commodities.

chemical manufacturing decarbonization electrification electrochemistry organic electrosynthesis

Journal

Annual review of chemical and biomolecular engineering
ISSN: 1947-5446
Titre abrégé: Annu Rev Chem Biomol Eng
Pays: United States
ID NLM: 101574034

Informations de publication

Date de publication:
08 Jun 2023
Historique:
medline: 12 6 2023
pubmed: 18 3 2023
entrez: 17 3 2023
Statut: ppublish

Résumé

Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.

Identifiants

pubmed: 36930876
doi: 10.1146/annurev-chembioeng-101121-090840
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

85-108

Auteurs

Ricardo Mathison (R)

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; email: mathison@nyu.edu, arf426@nyu.edu, bloomquist@nyu.edu, modestino@nyu.edu.

Alexandra L Ramos Figueroa (AL)

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; email: mathison@nyu.edu, arf426@nyu.edu, bloomquist@nyu.edu, modestino@nyu.edu.

Casey Bloomquist (C)

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; email: mathison@nyu.edu, arf426@nyu.edu, bloomquist@nyu.edu, modestino@nyu.edu.

Miguel A Modestino (MA)

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; email: mathison@nyu.edu, arf426@nyu.edu, bloomquist@nyu.edu, modestino@nyu.edu.

Articles similaires

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice
Humans Insulin Resistance Muscle, Skeletal Oxidative Stress Oxidation-Reduction

Classifications MeSH