Microbial necromass under global change and implications for soil organic matter.
carbon cycle and sequestration
climate change
global warming
meta-analysis
microbial residues
nutrient addition
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
19
10
2022
accepted:
21
02
2023
medline:
16
5
2023
pubmed:
20
3
2023
entrez:
19
3
2023
Statut:
ppublish
Résumé
Microbial necromass is an important source and component of soil organic matter (SOM), especially within the most stable pools. Global change factors such as anthropogenic nitrogen (N), phosphorus (P), and potassium (K) inputs, climate warming, elevated atmospheric carbon dioxide (eCO
Substances chimiques
Soil
0
Nitrogen
N762921K75
Types de publication
Meta-Analysis
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3503-3515Subventions
Organisme : China Scholarship Council
Organisme : RUDN University Strategic Academic Leadership Program
Organisme : Forest Ecosystem Improvement in the Upper Reaches of Yangtze River Basin Program of World Bank
ID : 510201202038467
Organisme : Natural Science Foundation of Sichuan Province
ID : 2022NSFSC1134
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Amelung, W., Miltner, A., Zhang, X., & Zech, W. (2001). Fate of microbial residues during litter decomposition as affected by minerals. Soil Science, 166(9), 598-606. https://doi.org/10.1097/00010694-200109000-00003
Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021). Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, 108189. https://doi.org/10.1016/j.soilbio.2021.108189
Blagodatskaya, E., Blagodatsky, S., Dorodnikov, M., & Kuzyakov, Y. (2010). Elevated atmospheric CO2 increases microbial growth rates in soil: Results of three CO2 enrichment experiments. Global Change Biology, 16(2), 836-848. https://doi.org/10.1111/j.1365-2486.2009.02006.x
Bottner, P. (1985). Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C-and 15N-labelled plant material. Soil Biology and Biochemistry, 17, 329-337. https://doi.org/10.1016/0038-0717(85)90070-7
Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds, J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11(12), 1316-1327. https://doi.org/10.1111/j.1461-0248.2008.01251.x
Buckeridge, K. M., Creamer, C., & Whitaker, J. (2022). Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 36, 1396-1410. https://doi.org/10.1111/1365-2435.14014
Buckeridge, K. M., La Rosa, A. F., Mason, K. E., Whitaker, J., McNamara, N. P., Grant, H. K., & Ostle, N. J. (2020). Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil. Soil Biology and Biochemistry, 149, 107929. https://doi.org/10.1016/j.soilbio.2020.107929
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., & Rillig, M. C. (2018). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88, 4-21. https://doi.org/10.1002/ecm.1279
Chen, J., Seven, J., Zilla, T., Dippold, M. A., Blagodatskaya, E., & Kuzyakov, Y. (2019). Microbial C: N: P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study. Soil Biology and Biochemistry, 131, 206-216. https://doi.org/10.1016/j.soilbio.2019.01.017
Cotrufo, M. F., De Angelis, P., & Polle, A. (2005). Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology, 11(6), 971-982. https://doi.org/10.1111/j.1365-2486.2005.00958.x
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8(10), 776-779. https://doi.org/10.1038/ngeo2520
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995. https://doi.org/10.1111/gcb.12113
Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88(8), 2105-2113. https://doi.org/10.1890/06-1847.1
Crowther, T. W., Riggs, C., Lind, E. M., Borer, E. T., Seabloom, E. W., Hobbie, S. E., Wubs, J., Adler, P. B., Firn, J., Gherardi, L., Hagenah, N., Hofmockel, K. S., Knops, J. M. H., McCulley, R. L., McDougall, A., Peri, P. L., Prober, S. M., Stevens, C. J., & Routh, D. (2019). Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 22(6), 936-945. https://doi.org/10.1111/ele.13258
Cui, J., Zhu, Z., Xu, X., Liu, S., Jones, D. L., Kuzyakov, Y., Shibistova, O., Wu, J., & Ge, T. (2020). Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142, 107720. https://doi.org/10.1016/j.soilbio.2020.107720
de Graaff, M. A., Van Groenigen, K. J., Six, J., Hungate, B., & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 12(11), 2077-2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x
Demoling, F., Nilsson, L. O., & Bååth, E. (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biology and Biochemistry, 40, 370-379. https://doi.org/10.1016/j.soilbio.2007.08.019
Deng, L., Peng, C., Kim, D. G., Li, J., Liu, Y., Hai, X., Liu, Q., Huang, C., Shangguan, Z., & Kuzyakov, Y. (2021). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, 103501. https://doi.org/10.1016/j.earscirev.2020.103501
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13(3), 221-226. https://doi.org/10.1038/s41561-019-0530-4
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364. https://doi.org/10.1890/05-1839
Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159-171. https://doi.org/10.1016/j.foreco.2004.03.018
Frey, S. D., Ollinger, S., Nadelhoffer, K., Bowden, R., Brzostek, E., Burton, A., Caldwell, B. A., Crow, S., Goodale, C. L., Grandy, A. S., Finzi, A., Kramer, M. G., Lajtha, K., LeMoine, J., Martin, M., McDowell, W. H., Minocha, R., Sadowsky, J. J., Templer, P. H., & Wickings, K. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry, 121(2), 305-316. https://doi.org/10.1007/s10533-014-0004-0
García-Palacios, P., Crowther, T. W., Dacal, M., Hartley, I. P., Ye, S., & Bradford, M. A. (2021). Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment, 2, 507-517. https://doi.org/10.1038/s43017-021-00178-4
García-Palacios, P., Vandegehuchte, M. L., Shaw, E. A., Dam, M., Post, K. H., Ramirez, K. S., Sylvain, Z. A., de Tomasel, C. M., & Wall, D. H. (2015). Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Global Change Biology, 21(4), 1590-1600. https://doi.org/10.1111/gcb.12788
Glaser, B., Turrión, M. B., & Alef, K. (2004). Amino sugars and muramic acid-Biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry, 36, 399-407. https://doi.org/10.1016/j.soilbio.2003.10.013
Griepentrog, M., Bodé, S., Boeckx, P., Hagedorn, F., Heim, A., & Schmidt, M. W. I. (2014). Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 20(1), 327-340. https://doi.org/10.1111/gcb.12374
Gunina, A., Dippold, M. A., Glaser, B., & Kuzyakov, Y. (2014). Fate of low molecular weight organic substances in an arable soil: From microbial uptake to utilisation and stabilisation. Soil Biology and Biochemistry, 77, 304-313. https://doi.org/10.1016/j.soilbio.2014.06.029
Gunina, A., & Kuzyakov, Y. (2022). From energy to (soil organic) matter. Global Change Biology, 28, 2169-2182. https://doi.org/10.1111/gcb.16071
Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., Zhou, A., Fu, Y., Wu, L., He, Z., Van Nostrand, J. D., Ning, D., Liu, X., Luo, Y., … Zhou, J. (2018). Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 8(9), 813-818. https://doi.org/10.1038/s41558-018-0254-2
Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Hemkemeyer, M., Schwalb, S. A., Heinze, S., Joergensen, R. G., & Wichern, F. (2021). Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. https://doi.org/10.1016/j.micres.2021.126832
Hu, J., Huang, C., Zhou, S., Liu, X., & Dijkstra, F. A. (2022). Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis. Soil Biology and Biochemistry, 165, 108500. https://doi.org/10.1016/j.soilbio.2021.108500
Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., & Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5), 315-322. https://doi.org/10.1038/ngeo844
Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35-46. https://doi.org/10.1038/s41579-019-0265-7
Joergensen, R. G. (2018). Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54(5), 559-568. https://doi.org/10.1007/s00374-018-1288-3
Johnston, E. R., Kim, M., Hatt, J. K., Phillips, J. R., Yao, Q., Song, Y., Hazen, T., Mayes, M. A., & Konstantinidis, K. T. (2019). Phosphate addition increases tropical forest soil respiration primarily by deconstraining microbial population growth. Soil Biology and Biochemistry, 130, 43-54. https://doi.org/10.1016/j.soilbio.2018.11.026
Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., & Blagodatskaya, E. (2019). Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128, 66-78. https://doi.org/10.1016/j.soilbio.2018.10.005
LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. https://doi.org/10.1890/06-2057.1
Liang, C., Amelung, W., Lehmann, J., & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25(11), 3578-3590. https://doi.org/10.1111/gcb.14781
Liang, C., Gutknecht, J. L. M., & Balser, T. C. (2015). Microbial lipid and amino sugar responses to long-term simulated global environmental changes in a California annual grassland. Frontiers in Microbiology, 6, 1-11. https://doi.org/10.3389/fmicb.2015.00385
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 1-6. https://doi.org/10.1038/nmicrobiol.2017.105
Lin, D., Xia, J., & Wan, S. (2010). Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytologist, 188, 187-198. https://doi.org/10.1111/j.1469-8137.2010.03347.x
Liu, L., & Greaver, T. L. (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13(7), 819-828. https://doi.org/10.1111/j.1461-0248.2010.01482.x
Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Turner, B. L., Zhou, G., & Mo, J. (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118(16), e2020790118. https://doi.org/10.1073/pnas.2020790118
Manzoni, S., Taylor, P., Richter, A., Porporato, A., & Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91. https://doi.org/10.1111/j.1469-8137.2012.04225.x
Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105. https://doi.org/10.1126/science.aan2874
Miltner, A., Bombach, P., Schmidt-Brücken, B., & Kästner, M. (2012). SOM genesis: Microbial biomass as a significant source. Biogeochemistry, 111, 41-55. https://doi.org/10.1007/s10533-011-9658-z
Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R., McClure, R., Lipton, M., Hofmockel, K. S., & Jansson, J. K. (2020). Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources, 45, 29-59. https://doi.org/10.1146/annurev-environ-012320-082720
Nielsen, U. N., & Ball, B. A. (2015). Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421. https://doi.org/10.1111/gcb.12789
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19368-19373. https://doi.org/10.1073/pnas.1006463107
Nottingham, A. T., Meir, P., Velasquez, E., & Turner, B. L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237. https://doi.org/10.1038/s41586-020-2566-4
Poeplau, C., Helfrich, M., Dechow, R., Szoboszlay, M., Tebbe, C. C., Don, A., Greiner, B., Zopf, D., Thumm, U., Korevaar, H., & Geerts, R. (2019). Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biology and Biochemistry, 130, 167-176. https://doi.org/10.1016/j.soilbio.2018.12.019
Preece, C., Verbruggen, E., Liu, L., Weedon, J. T., & Peñuelas, J. (2019). Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 131, 28-39. https://doi.org/10.1016/j.soilbio.2018.12.022
Pregitzer, K. S., Burton, A. J., Zak, D. R., & Talhelm, A. F. (2008). Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology, 14(1), 142-153. https://doi.org/10.1111/j.1365-2486.2007.01465.x
Ramirez, K. S., Craine, J. M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18(6), 1918-1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x
Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2016). Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biology and Biochemistry, 97, 15-22. https://doi.org/10.1016/j.soilbio.2016.02.018
Reich, P. B., Hobbie, S. E., Lee, T. D., Rich, R., Pastore, M. A., & Worm, K. (2020). Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nature Geoscience, 13(12), 787-793. https://doi.org/10.1038/s41561-020-00657-1
Ren, C., Chen, J., Lu, X., Doughty, R., Zhao, F., Zhong, Z., Han, X., Yang, G., Feng, Y., & Ren, G. (2018). Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 116, 4-10. https://doi.org/10.1016/j.soilbio.2017.09.028
Rinnan, R., Michelsen, A., Bååth, E., & Jonasson, S. (2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13(1), 28-39. https://doi.org/10.1111/j.1365-2486.2006.01263.x
Romero-Olivares, A. L., Allison, S. D., & Treseder, K. K. (2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 107, 32-40. https://doi.org/10.1016/j.soilbio.2016.12.026
Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6), 1386-1394. https://doi.org/10.1890/06-0219
Schimel, J. P. (2018). Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics, 49(1), 409-432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
Schimel, J. P., & Schaeffer, S. M. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, 348. https://doi.org/10.3389/fmicb.2012.00348
Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 35(4), 549-563. https://doi.org/10.1016/S0038-0717(03)00015-4
Shao, P., He, H., Zhang, X., Xie, H., Bao, X., & Liang, C. (2018). Responses of microbial residues to simulated climate change in a semiarid grassland. Science of the Total Environment, 644, 1286-1291. https://doi.org/10.1016/j.scitotenv.2018.07.055
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A. (2013). Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16, 930-939. https://doi.org/10.1111/ele.12113
Soong, J. L., Castanha, C., Pries, C. E. H., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. I., & Torn, M. S. (2021). Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Science. Advances, 7, eabd1343. https://doi.org/10.1126/sciadv.abd1343
Soong, J. L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., & Richter, A. (2020). Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 26(4), 1953-1961. https://doi.org/10.1111/gcb.14962
Strickland, M. S., & Rousk, J. (2010). Considering fungal: bacterial dominance in soils e Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42(9), 1385-1395. https://doi.org/10.1016/j.soilbio.2010.05.007
Su, J., Ding, L., Xue, K., Yao, H., Quensen, J., Bai, S., Wei, W., Wu, J., Zhou, J., Tiedje, J. M., & Zhu, Y. G. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Molecular Ecology, 24(1), 136-150. https://doi.org/10.1111/mec.13010
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., & Jackson, R. B. (2021). A trade-off between plant and soil carbon storage under elevated CO2. Nature, 591, 599-603. https://doi.org/10.1038/s41586-021-03306-8
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353, 72-74. https://doi.org/10.1126/science.aai7976
Treseder, K. K. (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111-1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x
van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y., & Hungate, B. A. (2014). Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science, 344, 508-509. https://doi.org/10.1126/science.1249534
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1-48. https://doi.org/10.18637/jss.v036.i03
Waldrop, M. P., Zak, D. R., & Sinsabaugh, R. L. (2004). Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biology and Biochemistry, 36(9), 1443-1451. https://doi.org/10.1016/j.soilbio.2004.04.023
Wang, B., An, S., Liang, C., Liu, Y., & Kuzyakov, Y. (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422. https://doi.org/10.1016/j.soilbio.2021.108422
Wilcots, M. E., Schroeder, K. M., DeLancey, L. C., Kjaer, S. J., Hobbie, S. E., Seabloom, E. W., & Borer, E. T. (2022). Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology, 28, 4819-4831. https://doi.org/10.1111/gcb.16272
Wu, W., Wang, F., Xia, A., Zhang, Z., Wang, Z., Wang, K., Dong, J., Li, T., Wu, Y., Che, R., Li, L., Niu, S., Hao, Y., Wang, Y., & Cui, X. (2022). Meta-analysis of the impacts of phosphorus addition on soil microbes. Agriculture, Ecosystems & Environment, 340, 108180. https://doi.org/10.1016/j.agee.2022.108180
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2), 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
Xia, J., & Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179(2), 428-439. https://doi.org/10.1111/j.1469-8137.2008.02488.x
Xu, C., Xu, X., Ju, C., Chen, H. Y. H., Wilsey, B. J., Luo, Y., & Fan, W. (2021). Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology, 27(6), 1170-1180. https://doi.org/10.1111/gcb.15489
Xu, W., & Yuan, W. (2017). Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis. Soil Biology and Biochemistry, 115, 265-274. https://doi.org/10.1016/j.soilbio.2017.08.033
Yuan, Y., Li, Y., Mou, Z., Kuang, L., Wu, W., Zhang, J., Wang, F., Hui, D., Peñuelas, J., Sardans, J., Lambers, H., Wang, J., Kuang, Y., Li, Z., & Liu, Z. (2020). Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Global Change Biology, 27, 454-466. https://doi.org/10.1111/febs.12037
Yuan, Z., & Chen, H. Y. (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542. https://doi.org/10.1111/j.1466-8238.2009.00474.x
Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist, 147(1), 201-222. https://doi.org/10.1046/j.1469-8137.2000.00687.x
Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 24(7), 2810-2817. https://doi.org/10.1111/gcb.14148
Zhang, J., He, N., Liu, C., Xu, L., Chen, Z., Li, Y., Wang, R., Yu, G., Sun, W., Xiao, C., Chen, H. Y., & Reich, P. B. (2020). Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543. https://doi.org/10.1111/gcb.14973
Zhang, T., Chen, H. Y., & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825. https://doi.org/10.1038/s41396-018-0096-y
Zheng, M., Zhang, T., Luo, Y., Liu, J., Lu, X., Ye, Q., Wang, S., Huang, J., Mao, Q., & Mo, J. (2022). Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition. Nature Geoscience, 15, 1002-1010. https://doi.org/10.1038/s41561-022-01080-4
Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van Nostrand, J. D., & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110. https://doi.org/10.1038/nclimate1331
Zhou, Z., Wang, C., & Luo, Y. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. https://doi.org/10.1038/s41467-020-16881-7
Zhou, Z., Wang, C., Zheng, M., Jiang, L., & Luo, Y. (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 115, 433-441. https://doi.org/10.1016/j.soilbio.2017.09.015
Zhran, M., Ge, T., Tong, Y., Deng, Y., Wei, X., Lynn, T. M., Zhu, Z., Wu, J., & Gunina, A. (2021). Assessment of depth-dependent microbial carbon-use efficiency in long-term fertilized paddy soil using an 18O-H2O approach. Land Degradation & Development, 32(1), 199-207. https://doi.org/10.1002/ldr.3708
Zhu, E., Cao, Z., Jia, J., Liu, C., Zhang, Z., Wang, H., Dai, G., He, J., & Feng, X. (2021). Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27(10), 2241-2253. https://doi.org/10.1111/gcb.15541