Advances in biosynthesis of higher alcohols in Escherichia coli.
Biofuels
Escherichia coli
Heterologous biosynthesis
Higher alcohols
Journal
World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472
Informations de publication
Date de publication:
21 Mar 2023
21 Mar 2023
Historique:
received:
11
01
2023
accepted:
13
03
2023
entrez:
21
3
2023
pubmed:
22
3
2023
medline:
23
3
2023
Statut:
epublish
Résumé
In recent years, the development of green energy to replace fossil fuels has been the focus of research. Higher alcohols are important biofuels and chemicals. The production of higher alcohols in microbes has gained attention due to its environmentally friendly character. Higher alcohols have been synthesized in model microorganism Escherichia coli, and the production has reached the gram level through enhancement of metabolic flow, the balance of reducing power and the optimization of fermentation processes. Sustainable bio-higher alcohols production is expected to replace fossil fuels as a green and renewable energy source. Therefore, this review summarizes the latest developments in producing higher alcohols (C3-C6) by E. coli, elucidate the main bottlenecks limiting the biosynthesis of higher alcohols, and proposes potential engineering strategies of improving the production of biological higher alcohols. This review would provide a theoretical basis for further research on higher alcohols production by E. coli.
Identifiants
pubmed: 36941474
doi: 10.1007/s11274-023-03580-w
pii: 10.1007/s11274-023-03580-w
doi:
Substances chimiques
Alcohols
0
Biofuels
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
125Subventions
Organisme : National Natural Science Foundation of China
ID : NSFC-30900033
Organisme : National Natural Science Foundation of China
ID : NSFC-30900033
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Abdelaal AS, Jawed K, Yazdani SS (2019) CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J Ind Microbiol Biotechnol 46:965–975. https://doi.org/10.1007/s10295-019-02180-8
doi: 10.1007/s10295-019-02180-8
pubmed: 30982114
Abdelaal AS, Yazdani SS (2022) Engineering E. coli to synthesize butanol. Biochem Soc Trans. doi: https://doi.org/10.1042/BST20211009
Ahn YJ, Im E (2020) Heterologous expression of heat shock proteins confers stress tolerance in Escherichia coli, an industrial cell factory: A short review. Biocatal Agric Biotechnol 29. doi: https://doi.org/10.1016/j.bcab.2020.101833
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311. https://doi.org/10.1016/j.ymben.2007.08.003
doi: 10.1016/j.ymben.2007.08.003
pubmed: 17942358
Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. https://doi.org/10.1038/nature06450
doi: 10.1038/nature06450
pubmed: 18172501
Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808. https://doi.org/10.1128/AEM.02046-08
doi: 10.1128/AEM.02046-08
pubmed: 18952866
pmcid: 2607174
Babel H, Kromer JO (2020) Evolutionary engineering of E. coli MG1655 for tolerance against isoprenol. Biotechnol Biofuels 13:183. doi: https://doi.org/10.1186/s13068-020-01825-6
Banares AB, Nisola GM, Valdehuesa KNG, Lee WK, Chung WJ (2021) Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds. Crit Rev Biotechnol 41:649–668. https://doi.org/10.1080/07388551.2021.1873243
doi: 10.1080/07388551.2021.1873243
pubmed: 33563072
Baumler M, Schneider M, Ehrenreich A, Liebl W, Weuster-Botz D (2021) Synthetic co-culture of autotrophic Clostridium carboxidivorans and chain elongating Clostridium kluyveri monitored by flow cytometry. Microb Biotechnol. https://doi.org/10.1111/1751-7915.13941
doi: 10.1111/1751-7915.13941
pubmed: 34669248
pmcid: 9049614
Birgen C, Durre P, Preisig HA, Wentzel A (2019) Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnol Biofuels 12:167. https://doi.org/10.1186/s13068-019-1508-6
doi: 10.1186/s13068-019-1508-6
pubmed: 31297155
pmcid: 6598312
Bui le M, Lee JY, Geraldi A, Rahman Z, Lee JH, Kim SC (2015) Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. J Biotechnol 204:33–44. https://doi.org/10.1016/j.jbiotec.2015.03.025
doi: 10.1016/j.jbiotec.2015.03.025
pubmed: 25858152
Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H (2016) Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol 42:118–125. https://doi.org/10.1016/j.copbio.2016.04.016
doi: 10.1016/j.copbio.2016.04.016
pubmed: 27132123
Busic A, Mardetko N, Kundas S, Morzak G, Belskaya H, Ivancic Santek M, Komes D, Novak S, Santek B (2018) Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol Biotechnol 56:289–311. https://doi.org/10.17113/ftb.56.03.18.5546
doi: 10.17113/ftb.56.03.18.5546
pubmed: 30510474
pmcid: 6233010
Chen GS, Siao SW, Shen CR (2017) Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Sci Rep 7:11284. https://doi.org/10.1038/s41598-017-11624-z
doi: 10.1038/s41598-017-11624-z
pubmed: 28900255
pmcid: 5595793
Chia GWN, Seviour T, Kjelleberg S, Hinks J (2021) Carotenoids improve bacterial tolerance towards biobutanol through membrane stabilization. Environ Sci Nano 8:328–341. https://doi.org/10.1039/d0en00983k
doi: 10.1039/d0en00983k
Choi YJ, Park JH, Kim TY, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14:477–486. https://doi.org/10.1016/j.ymben.2012.07.006
doi: 10.1016/j.ymben.2012.07.006
pubmed: 22871504
Crabbe E, Hipolito CN, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:65–71
doi: 10.1016/S0032-9592(01)00178-9
Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y (2012) Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 5:44
doi: 10.1186/1754-6834-5-44
pubmed: 22742819
pmcid: 3674747
Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133:11399–11401. https://doi.org/10.1021/ja203814d
doi: 10.1021/ja203814d
pubmed: 21707101
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359. https://doi.org/10.1038/nature10333
doi: 10.1038/nature10333
pubmed: 21832992
Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13:570–577. https://doi.org/10.1016/j.ymben.2011.06.007
doi: 10.1016/j.ymben.2011.06.007
pubmed: 21757023
Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756. https://doi.org/10.1074/jbc.273.40.25751
doi: 10.1074/jbc.273.40.25751
pubmed: 9748245
Dong H, Zhao C, Zhang T (2015) Engineering Escherichia coli cell factories for n-butanol production. Springer, Berlin, Heidelberg 155:141–163
Dong H, Zhao C, Zhang T, Zhu H, Lin Z, Tao W, Zhang Y, Li Y (2017) A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab Eng 44:284–292. https://doi.org/10.1016/j.ymben.2017.10.014
doi: 10.1016/j.ymben.2017.10.014
pubmed: 29102594
Du G, Zhu C, Xu M, Wang L, Yang S-T, Xue C (2021) Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness. Green Chem 23:2155–2168. https://doi.org/10.1039/d0gc03993d
doi: 10.1039/d0gc03993d
Fernandez NA, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2–C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395. https://doi.org/10.1016/j.biortech.2019.02.018
doi: 10.1016/j.biortech.2019.02.018
Ferreira S, Pereira R, Liu F, Vilaca P, Rocha I (2019) Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. Biotechnol Biofuels 12:230. https://doi.org/10.1186/s13068-019-1565-x
doi: 10.1186/s13068-019-1565-x
pubmed: 31583016
pmcid: 6767645
Fisher MA, Boyarskiy S, Yamada MR, Kong N, Bauer S, Tullman-Ercek D (2014) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol 3:30–40. https://doi.org/10.1021/sb400065q
doi: 10.1021/sb400065q
pubmed: 23991711
Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5:e01932. doi: https://doi.org/10.1128/mBio.01932-14
Fu C, Li Z, Jia C, Zhang W, Zhang Y, Yi C, Xie S (2021) Recent advances on bio-based isobutanol separation. Energy Conv Manag: X 10. doi: https://doi.org/10.1016/j.ecmx.2020.100059
Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W, Liu L (2019) Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun 10:3751. https://doi.org/10.1038/s41467-019-11793-7
doi: 10.1038/s41467-019-11793-7
pubmed: 31434894
pmcid: 6704175
Gehrmann S, Tenhumberg N (2020) Production and use of sustainable C2–C4 alcohols: An industrial perspective. Chem Ing Tec 92:1444–1458. https://doi.org/10.1002/cite.202000077
doi: 10.1002/cite.202000077
Hammer SK, Zhang Y, Avalos JL (2020) Mitochondrial compartmentalization confers specificity to the 2-ketoacid recursive pathway: Increasing isopentanol production in Saccharomyces cerevisiae. ACS Synth Biol 9:546–555. https://doi.org/10.1021/acssynbio.9b00420
doi: 10.1021/acssynbio.9b00420
pubmed: 32049515
Hartline CJ, Schmitz AC, Han Y, Zhang F (2021) Dynamic control in metabolic engineering: Theories, tools, and applications. Metab Eng 63:126–140. https://doi.org/10.1016/j.ymben.2020.08.015
doi: 10.1016/j.ymben.2020.08.015
pubmed: 32927059
He X, Xue T, Ma Y, Zhang J, Wang Z, Hong J, Hui L, Qiao J, Song H, Zhang M (2019) Identification of functional butanol-tolerant genes from Escherichia coli mutants derived from error-prone PCR-based whole-genome shuffling. Biotechnol Biofuels 12:73. https://doi.org/10.1186/s13068-019-1405-z
doi: 10.1186/s13068-019-1405-z
pubmed: 30976323
pmcid: 6442406
He X, Zhang M, Hong J, Ma Y (2018) Research progress on butanol-tolerant strain and tolerance mechanism of Escherichia coli. China Biotechnology 38:81–87
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schroder H, Koch W, Zelder O (2021) Unlocking nature’s biosynthetic power-metabolic engineering for the fermentative production of chemicals. Angew Chem Int Ed Engl 60:2258–2278. https://doi.org/10.1002/anie.202004248
doi: 10.1002/anie.202004248
pubmed: 33026132
Hou J, Gao C, Guo L, Nielsen J, Ding Q, Tang W, Hu G, Chen X, Liu L (2020) Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metab Eng 61:47–57. https://doi.org/10.1016/j.ymben.2020.05.004
doi: 10.1016/j.ymben.2020.05.004
pubmed: 32416271
Hu D, Wang Z, He M, Ma Y (2021) Functional gene identification and corresponding tolerant mechanism of high furfural-tolerant Zymomonas mobilis strain F211. Front Microbiol 12:736583. doi: https://doi.org/10.3389/fmicb.2021.736583
Jacob A, Ashok B (2022) Biosynthesis of amyl alcohol from Scenedesmus quadricauda microalgae for light commercial vehicle compression ignition engine using prediction models. J Energy Resour Technol 144. doi: https://doi.org/10.1115/1.4052542
Jain R, Sun X, Yuan Q, Yan Y (2015) Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth Biol 4:746–756. https://doi.org/10.1021/sb500345t
doi: 10.1021/sb500345t
pubmed: 25490349
Jang YS, Malaviya A, Lee SY (2013) Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol Bioeng 110:1646–1653. https://doi.org/10.1002/bit.24843
doi: 10.1002/bit.24843
pubmed: 23335317
Jawed K, Abdelaal AS, Koffas MAG, Yazdani SS (2020) Improved butanol production using fasii pathway in E. coli. ACS Synth Biol 9:2390–2398. https://doi.org/10.1021/acssynbio.0c00154
doi: 10.1021/acssynbio.0c00154
pubmed: 32813973
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E (2021) Microbial production of advanced biofuels. Nat Rev Microbiol 19:701–715. https://doi.org/10.1038/s41579-021-00577-w
doi: 10.1038/s41579-021-00577-w
pubmed: 34172951
Kim SK, Seong W, Han GH, Lee DH, Lee SG (2017) CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb Cell Fact 16:188. https://doi.org/10.1186/s12934-017-0802-x
doi: 10.1186/s12934-017-0802-x
pubmed: 29100516
pmcid: 5670510
Lee JY, Yang KS, Jang SA, Sung BH, Kim SC (2011) Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 108:742–749. https://doi.org/10.1002/bit.22989
doi: 10.1002/bit.22989
pubmed: 21404248
Lin LJ, Saini M, Chiang C-J, Chao Y-P (2021) Biocatalytic conversion of short-chain fatty acids to corresponding alcohols in Escherichia coli. Processes 9. doi: https://doi.org/10.3390/pr9060973
Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387. https://doi.org/10.1016/j.biortech.2011.10.089
doi: 10.1016/j.biortech.2011.10.089
pubmed: 22101071
Lv Y, Jiang Y, Peng W, Fang Y, Dong W, Zhou J, Zhang W, Xin F, Jiang M (2020) Genetic manipulation of non-solvent-producing microbial species for effective butanol production. Biofuels, Bioprod Biorefin 15:119–130. https://doi.org/10.1002/bbb.2152
doi: 10.1002/bbb.2152
Ma Y, Feng C, Hong J, Zhang M, Zou S (2020) Production of butanol from xylose by Clostridium baileyi and applications. CN106754553B.
Machado HB, Dekishima Y, Luo H, Lan EI, Liao JC (2012) A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 14:504–511. https://doi.org/10.1016/j.ymben.2012.07.002
doi: 10.1016/j.ymben.2012.07.002
pubmed: 22819734
Mak WS, Tran S, Marcheschi R, Bertolani S, Thompson J, Baker D, Liao JC, Siegel JB (2015) Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat Commun 6:10005. https://doi.org/10.1038/ncomms10005
doi: 10.1038/ncomms10005
pubmed: 26598135
Mar MJ (2020) Biological production of 2-butanol. Technical University of Denmark.
Miao R, Xie H, F MH, Lindblad P, (2018) Protein engineering of alpha-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803. Metab Eng 47:42–48. https://doi.org/10.1016/j.ymben.2018.02.014
doi: 10.1016/j.ymben.2018.02.014
pubmed: 29501927
Morrison MS, Podracky CJ, Liu DR (2020) The developing toolkit of continuous directed evolution. Nat Chem Biol 16:610–619. https://doi.org/10.1038/s41589-020-0532-y
doi: 10.1038/s41589-020-0532-y
pubmed: 32444838
Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23:498–508. https://doi.org/10.1016/j.tim.2015.04.008
doi: 10.1016/j.tim.2015.04.008
pubmed: 26024777
Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459. https://doi.org/10.1016/j.copbio.2003.08.005
doi: 10.1016/j.copbio.2003.08.005
pubmed: 14580573
Nishimura Y, Matsui T, Ishii J, Kondo A (2018) Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Microb Cell Fact 17:38. https://doi.org/10.1186/s12934-018-0883-1
doi: 10.1186/s12934-018-0883-1
pubmed: 29523149
pmcid: 5844117
Ohtake T, Pontrelli S, Lavina WA, Liao JC, Putri SP, Fukusaki E (2017) Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab Eng 41:135–143. https://doi.org/10.1016/j.ymben.2017.04.003
doi: 10.1016/j.ymben.2017.04.003
pubmed: 28400330
Olivares AO, Baker TA, Sauer RT (2016) Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 14:33–44. https://doi.org/10.1038/nrmicro.2015.4
doi: 10.1038/nrmicro.2015.4
pubmed: 26639779
Park H, Jeon BS, Sang B-I (2020) Efficient, simple production of corresponding alcohols from supplemented C2–C8 carboxylic acids in Escherichia coli using acyl-coa transferase from megasphaera hexanoica. Biotechnol Bioprocess Eng 25:599–606. https://doi.org/10.1007/s12257-020-0163-x
doi: 10.1007/s12257-020-0163-x
Qiao W, Dong G, Xu S, Li L, Shi S (2022) Engineering propionyl-CoA pools for de novo biosynthesis of odd-chain fatty acids in microbial cell factories. Crit Rev Biotechnol:1–10. doi: https://doi.org/10.1080/07388551.2022.2100736
Qiu X, Xu P, Zhao X, Du G, Zhang J, Li J (2020) Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab Eng 60:66–76. https://doi.org/10.1016/j.ymben.2020.03.006
doi: 10.1016/j.ymben.2020.03.006
pubmed: 32224262
Qureshi N, Friedl A, Maddox IS (2014) Butanol production from concentrated lactose/whey permeate: use of pervaporation membrane to recover and concentrate product. Appl Microbiol Biotechnol 98:9859–9867. https://doi.org/10.1007/s00253-014-6117-5
doi: 10.1007/s00253-014-6117-5
pubmed: 25326775
Qureshi N, Lin X, Liu S, Saha BC, Mariano AP, Polaina J, Ezeji TC, Friedl A, Maddox IS, Klasson KT, Dien BS, Singh V (2020) Global view of biofuel butanol and economics of its production by fermentation from sweet sorghum bagasse, food waste, and yellow top presscake: Application of novel technologies. Fermentation 6. doi: https://doi.org/10.3390/fermentation6020058
Qureshi N, Meagher MM, Huang J, Hutkins RW (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102
doi: 10.1016/S0376-7388(00)00667-0
Reyes LH, Almario MP, Winkler J, Orozco MM, Kao KC (2012) Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 14:579–590. https://doi.org/10.1016/j.ymben.2012.05.002
doi: 10.1016/j.ymben.2012.05.002
pubmed: 22652227
Roussos A, Misailidis N, Koulouris A, Zimbardi F, Petrides D (2019) A feasibility study of cellulosic isobutanol production—process simulation and economic analysis. Processes 7. doi: https://doi.org/10.3390/pr7100667
Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76:1935–1945. https://doi.org/10.1128/AEM.02323-09
doi: 10.1128/AEM.02323-09
pubmed: 20118358
pmcid: 2838030
Salehizadeh H, Yan N, Farnood R (2020) Recent advances in microbial CO2 fixation and conversion to value-added products. Chem Eng J 390. doi: https://doi.org/10.1016/j.cej.2020.124584
Sandoval NR, Papoutsakis ET (2016) Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Curr Opin Microbiol 33:56–66. https://doi.org/10.1016/j.mib.2016.06.005
doi: 10.1016/j.mib.2016.06.005
pubmed: 27376665
pmcid: 5069143
Satam CC, Daub M, Realff MJ (2019) Techno-economic analysis of 1,4-butanediol production by a single-step bioconversion process. Biofuels, Bioprod Biorefin 13:1261–1273. https://doi.org/10.1002/bbb.2016
doi: 10.1002/bbb.2016
Schubert T (2020) Production routes of advanced renewable C1 to C4 alcohols as biofuel components: A review. Biofuels, Bioprod Biorefin 14:845–878. https://doi.org/10.1002/bbb.2109
doi: 10.1002/bbb.2109
Scully SM, Orlygsson J (2019) Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Technologies and Approaches for Scale-up and Commercialization 23:83–108
Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915. https://doi.org/10.1128/AEM.03034-10
doi: 10.1128/AEM.03034-10
pubmed: 21398484
pmcid: 3126405
Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320. https://doi.org/10.1016/j.ymben.2008.08.001
doi: 10.1016/j.ymben.2008.08.001
pubmed: 18775501
Sherkhanov S, Korman TP, Chan S, Faham S, Liu H, Sawaya MR, Hsu WT, Vikram E, Cheng T, Bowie JU (2020) Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun 11:4292. https://doi.org/10.1038/s41467-020-18124-1
doi: 10.1038/s41467-020-18124-1
pubmed: 32855421
pmcid: 7453195
Silva Ruy da AD, Brito Alves de RM, Reis Hewer TL, Aguiar Pontes de D, Gomes Teiseira LS, Magalhães Pontes LA (2021) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 381:243–253. https://doi.org/10.1016/j.cattod.2020.06.035
Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y (2016) DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnol Biofuels 9:114. https://doi.org/10.1186/s13068-016-0527-9
doi: 10.1186/s13068-016-0527-9
pubmed: 27252779
pmcid: 4888631
Srirangan K, Akawi L, Liu X, Westbrook A, Blondeel EJ, Aucoin MG, Murray MY, Chou CP (2013) Manipulating the sleeping beauty mutase operon. Biotechnol Biofuels 6:139
doi: 10.1186/1754-6834-6-139
pubmed: 24074355
pmcid: 3850637
Tanaka S, Tashiro Y, Kobayashi G, Ikegami T, Negishi H, Sakaki K (2012) Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1–4 with 1-dodecanol as the extractant. Bioresour Technol 116:448–452. https://doi.org/10.1016/j.biortech.2012.03.096
doi: 10.1016/j.biortech.2012.03.096
pubmed: 22575842
Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K (1968) The energy metabolism of Clostridium kluyveri. Eur J Biochem 4:173–180
doi: 10.1111/j.1432-1033.1968.tb00189.x
pubmed: 5655494
Vasylkivska M, Patakova P (2020) Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 320:17–27. https://doi.org/10.1016/j.jbiotec.2020.06.008
doi: 10.1016/j.jbiotec.2020.06.008
pubmed: 32553531
Walther T, Francois JM (2016) Microbial production of propanol. Biotechnol Adv 34:984–996. https://doi.org/10.1016/j.biotechadv.2016.05.011
doi: 10.1016/j.biotechadv.2016.05.011
pubmed: 27262999
Wang J, Jian X, Xing XH, Zhang C, Fei Q (2020a) Empowering a methanol-dependent Escherichia coli via adaptive evolution using a high-throughput microbial microdroplet culture system. Front Bioeng Biotechnol 8:570. https://doi.org/10.3389/fbioe.2020.00570
doi: 10.3389/fbioe.2020.00570
pubmed: 32733857
pmcid: 7363950
Wang Q, ding Y, Liu L, Shi J, Sun J, Xue Y, (2015) Engineering Escherichia coli for autoinducible production of n-butanol. Electron J Biotechnol 18:138–142. https://doi.org/10.1016/j.ejbt.2015.01.003
doi: 10.1016/j.ejbt.2015.01.003
Wang X, Han JN, Zhang X, Ma YY, Lin Y, Wang H, Li DJ, Zheng TR, Wu FQ, Ye JW, Chen GQ (2021) Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun 12:1411. https://doi.org/10.1038/s41467-021-21654-x
doi: 10.1038/s41467-021-21654-x
pubmed: 33658500
pmcid: 7930084
Wang YR, Chiang YS, Chuang PJ, Chao YP, Li SY (2016) Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation. Appl Microbiol Biotechnol 100:7449–7456. https://doi.org/10.1007/s00253-016-7443-6
doi: 10.1007/s00253-016-7443-6
pubmed: 27005413
Wang Z, Xue T, Hu D, Ma Y (2020b) A novel butanol tolerance-promoting function of the transcription factor rob in Escherichia coli. Front Bioeng Biotechnol 8:524198. doi: https://doi.org/10.3389/fbioe.2020.524198
Wilbanks B, Trinh CT (2017) Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnol Biofuels 10:262. https://doi.org/10.1186/s13068-017-0952-4
doi: 10.1186/s13068-017-0952-4
pubmed: 29213315
pmcid: 5707818
Wingad RL, Bergstrom EJ, Everett M, Pellow KJ, Wass DF (2016) Catalytic conversion of methanol/ethanol to isobutanol–a highly selective route to an advanced biofuel. Chem Commun (camb) 52:5202–5204. https://doi.org/10.1039/c6cc01599a
doi: 10.1039/c6cc01599a
pubmed: 26998669
Wood HG (1981) Metabolic cycles in the fermentation by propionic acid bacteria. Curr Top Cell Regul 18:255–287
doi: 10.1016/B978-0-12-152818-8.50021-9
pubmed: 7273844
Xu G, Xiao L, Wu A, Han R, Ni Y (2021) Enhancing n-butanol tolerance of Escherichia coli by overexpressing of stress-responsive molecular chaperones. Appl Biochem Biotechnol 193:257–270. https://doi.org/10.1007/s12010-020-03417-4
doi: 10.1007/s12010-020-03417-4
pubmed: 32929579
Xue C, Zhao JB, Chen LJ, Bai FW, Yang ST, Sun JX (2014) Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl Microbiol Biotechnol 98:3463–3474. https://doi.org/10.1007/s00253-014-5561-6
doi: 10.1007/s00253-014-5561-6
pubmed: 24535254
Ye W, Li J, Han R, Xu G, Dong J, Ni Y (2017) Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. Bioresour Technol 235:140–148. https://doi.org/10.1016/j.biortech.2017.03.085
doi: 10.1016/j.biortech.2017.03.085
pubmed: 28365341
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452. https://doi.org/10.1038/nchembio.580
doi: 10.1038/nchembio.580
pubmed: 21602812
Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ (2014) Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp. Appl Microbiol Biotechnol 98:8987–8997. https://doi.org/10.1007/s00253-014-5959-1
doi: 10.1007/s00253-014-5959-1
pubmed: 25070598
Yoneda H, Tantillo DJ, Atsumi S (2014) Biological production of 2-butanone in Escherichia coli. Chemsuschem 7:92–95. https://doi.org/10.1002/cssc.201300853
doi: 10.1002/cssc.201300853
pubmed: 24193695
Yu H, Chen Z, Wang N, Yu S, Yan Y, Huo YX (2019a) Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng 56:28–38. https://doi.org/10.1016/j.ymben.2019.08.015
doi: 10.1016/j.ymben.2019.08.015
pubmed: 31449878
Yu H, Wang N, Huo W, Zhang Y, Zhang W, Yang Y, Chen Z, Huo YX (2019b) Establishment of BmoR-based biosensor to screen isobutanol overproducer. Microb Cell Fact 18:30. https://doi.org/10.1186/s12934-019-1084-2
doi: 10.1186/s12934-019-1084-2
pubmed: 30732651
pmcid: 6366067
Yu H, Ye Q, Xu H, Zhang H, Dai X (2015) Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation. Ind Eng Chem Res 54:3384–3397. https://doi.org/10.1021/ie504325g
doi: 10.1021/ie504325g
Yuan J, Chen X, Mishra P, Ching CB (2017) Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Appl Microbiol Biotechnol 101:465–474. https://doi.org/10.1007/s00253-016-7970-1
doi: 10.1007/s00253-016-7970-1
pubmed: 27847988
Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. PNAS 105:20653–20658
doi: 10.1073/pnas.0807157106
pubmed: 19064911
pmcid: 2634914
Zhao C, Sinumvayo JP, Zhang Y, Li Y (2019) Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng 55:111–119. https://doi.org/10.1016/j.ymben.2019.06.012
doi: 10.1016/j.ymben.2019.06.012
pubmed: 31251983
Zhao C, Zhang Y, Li Y (2020a) Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources. Biochem Soc Trans 48:2283–2293. https://doi.org/10.1042/BST20200603
doi: 10.1042/BST20200603
pubmed: 32897293
Zhao Z, Xian M, Liu M, Zhao G (2020b) Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels 13:21. https://doi.org/10.1186/s13068-020-1662-x
doi: 10.1186/s13068-020-1662-x
pubmed: 32021652
pmcid: 6995148
Zhu F, Liu D, Chen Z (2022) Recent advances in biological production of 1,3-propanediol: New routes and engineering strategies. Green Chem 24:1390–1403. https://doi.org/10.1039/d1gc04288b
doi: 10.1039/d1gc04288b
Zhu Y, Wang Y, Gao H, Wang H, Wan Z, Jiang Y, Xin F, Zhang W, Jiang M (2021) Current advances in microbial production of 1,3-propanediol. Biofuels, Bioprod Biorefin 15:1566–1583. https://doi.org/10.1002/bbb.2254
doi: 10.1002/bbb.2254
Zingaro KA, Papoutsakis ET (2013) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205. https://doi.org/10.1016/j.ymben.2012.07.009
doi: 10.1016/j.ymben.2012.07.009
pubmed: 22898718