Mitochondrial network structure controls cell-to-cell mtDNA variability generated by cell divisions.


Journal

PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922

Informations de publication

Date de publication:
03 2023
Historique:
received: 27 06 2022
accepted: 15 02 2023
revised: 04 04 2023
medline: 6 4 2023
pubmed: 24 3 2023
entrez: 23 3 2023
Statut: epublish

Résumé

Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in different cells, from cell-wide reticulated networks to fragmented individual organelles. These physical structures are known to influence the genetic makeup of mtDNA populations between cell divisions, but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use statistical and computational models of mtDNA content inside and outside the reticulated network to quantify how mitochondrial network structure can control the variances of inherited mtDNA copy number and mutant load. We assess the use of moment-based approximations to describe heteroplasmy variance and identify several cases where such an approach has shortcomings. We show that biased inclusion of one mtDNA type in the network can substantially increase heteroplasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Network structure also allows the generation of heteroplasmy variance while controlling copy number inheritance to sub-binomial levels, reconciling several observations from the experimental literature. Overall, different network structures and mtDNA arrangements within them can control the variances of key variables to suit a palette of different inheritance priorities.

Identifiants

pubmed: 36952562
doi: 10.1371/journal.pcbi.1010953
pii: PCOMPBIOL-D-22-00964
pmc: PMC10072490
doi:

Substances chimiques

DNA, Mitochondrial 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1010953

Informations de copyright

Copyright: © 2023 Glastad, Johnston. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Nat Cell Biol. 2018 Feb;20(2):144-151
pubmed: 29335530
PLoS Comput Biol. 2015 May 21;11(5):e1004183
pubmed: 25996936
Front Cell Dev Biol. 2019 Nov 20;7:294
pubmed: 31824946
Dev Growth Differ. 2018 Jan;60(1):21-32
pubmed: 29363102
PLoS Biol. 2008 Jan;6(1):e10
pubmed: 18232733
Front Cell Dev Biol. 2021 Nov 03;9:767221
pubmed: 34805174
Science. 2019 May 24;364(6442):
pubmed: 31123110
Biophys J. 2008 Nov 15;95(10):4523-8
pubmed: 18689455
Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a021220
pubmed: 24186072
Genetics. 2019 Aug;212(4):1429-1443
pubmed: 31253641
Nature. 2021 Mar;591(7851):659-664
pubmed: 33658713
PLoS Genet. 2019 Jun 6;15(6):e1008140
pubmed: 31170157
PLoS One. 2013 Oct 11;8(10):e76230
pubmed: 24146842
Sci Rep. 2021 Nov 23;11(1):22755
pubmed: 34815439
Sci Rep. 2017 Sep 12;7(1):11257
pubmed: 28900194
Int J Mol Sci. 2020 May 29;21(11):
pubmed: 32485941
Elife. 2015 Jun 02;4:e07464
pubmed: 26035426
PLoS Biol. 2021 Apr 23;19(4):e3001153
pubmed: 33891583
Nat Genet. 2011 Feb;43(2):95-100
pubmed: 21186354
Nat Rev Genet. 2015 Sep;16(9):530-42
pubmed: 26281784
EMBO J. 2008 Jan 23;27(2):433-46
pubmed: 18200046
Nat Cell Biol. 2018 Jul;20(7):745-754
pubmed: 29950572
J Chem Phys. 2015 Nov 14;143(18):185101
pubmed: 26567686
Cell Syst. 2021 May 19;12(5):419-431.e4
pubmed: 34015261
Nat Rev Mol Cell Biol. 2020 Mar;21(3):151-166
pubmed: 32034394
Biochim Biophys Acta. 2008 Sep;1777(9):1092-7
pubmed: 18519024
Science. 2008 Feb 15;319(5865):958-62
pubmed: 18276892
PLoS Comput Biol. 2013;9(7):e1003108
pubmed: 23874166
Science. 2016 Jan 8;351(6269):169-72
pubmed: 26744405
Proc Math Phys Eng Sci. 2015 Aug 8;471(2180):20150050
pubmed: 26339194
J Theor Biol. 2017 Dec 7;434:50-57
pubmed: 28408315
Nat Genet. 2014 Apr;46(4):389-92
pubmed: 24614072
PLoS Comput Biol. 2012;8(3):e1002416
pubmed: 22412363
Nat Genet. 2008 Feb;40(2):249-54
pubmed: 18223651
Am J Hum Genet. 2016 Nov 3;99(5):1150-1162
pubmed: 27843124
PLoS Comput Biol. 2012;8(10):e1002745
pubmed: 23133350
Semin Cell Dev Biol. 2010 Aug;21(6):550-7
pubmed: 20044013
Cell Rep. 2014 Jun 26;7(6):2031-2041
pubmed: 24910436
Nat Genet. 2007 Mar;39(3):386-90
pubmed: 17293866
Genetics. 2017 Nov;207(3):1079-1088
pubmed: 28893855
Biochem J. 2003 Mar 15;370(Pt 3):751-62
pubmed: 12467494
PLoS Genet. 2009 Dec;5(12):e1000756
pubmed: 19997484
Bioessays. 2015 Jan;37(1):80-94
pubmed: 25302405
J Cell Sci. 2004 Jun 1;117(Pt 13):2653-62
pubmed: 15138283
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2122073119
pubmed: 36442091
Mol Plant. 2019 Jun 3;12(6):764-783
pubmed: 30445187
Quant Plant Biol. 2022 Sep 09;3:e18
pubmed: 37077986
Bioessays. 2015 Jun;37(6):687-700
pubmed: 25847815
Nat Commun. 2018 Oct 30;9(1):4528
pubmed: 30375377
Plant Physiol. 1998 Sep;118(1):9-17
pubmed: 9733521
Mutat Res. 1964 May;106:2-9
pubmed: 14195748
Nat Commun. 2018 Jun 27;9(1):2488
pubmed: 29950599
Nat Genet. 2008 Dec;40(12):1484-8
pubmed: 19029901
Curr Biol. 2017 Nov 6;27(21):R1177-R1192
pubmed: 29112874
Plant Signal Behav. 2009 Mar;4(3):168-71
pubmed: 19721742
Life (Basel). 2020 Aug 26;10(9):
pubmed: 32858900
iScience. 2021 Feb 24;24(3):102220
pubmed: 33748708
J Cell Biol. 1968 Apr;37(1):27-46
pubmed: 5645844
PLoS Comput Biol. 2022 Oct 4;18(10):e1010574
pubmed: 36194626
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10177-84
pubmed: 25814499
Nature. 2019 Jun;570(7761):380-384
pubmed: 31092924
Sci Rep. 2018 Jan 10;8(1):363
pubmed: 29321534
Bull Math Biol. 2019 Aug;81(8):2960-3009
pubmed: 29785521
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):829-844
pubmed: 29727614
Biophys J. 2009 May 6;96(9):3509-18
pubmed: 19413957
Genome Biol. 2001;2(6):REVIEWS1018
pubmed: 11423013
PLoS Comput Biol. 2012;8(6):e1002576
pubmed: 22761564
Sci Adv. 2021 Sep 03;7(36):eabi8886
pubmed: 34516914
Cell Syst. 2016 Feb 24;2(2):101-11
pubmed: 27135164

Auteurs

Robert C Glastad (RC)

Department of Mathematics, University of Bergen, Bergen, Norway.

Iain G Johnston (IG)

Department of Mathematics, University of Bergen, Bergen, Norway.
Computational Biology Unit, University of Bergen, Bergen, Norway.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

High mitochondrial DNA levels accelerate lung adenocarcinoma progression.

Mara Mennuni, Stephen E Wilkie, Pauline Michon et al.
1.00
DNA, Mitochondrial Animals Adenocarcinoma of Lung Disease Progression Mice

Classifications MeSH