Tendril morphogenesis is regulated by a CsaTEN-CsaUFO module in cucumber.
CsaTEN
CsaUFO
tmd1
cucumber
morphogenesis
tendril
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
24
11
2022
accepted:
21
03
2023
medline:
2
6
2023
pubmed:
28
3
2023
entrez:
27
3
2023
Statut:
ppublish
Résumé
Tendril is a morphological innovation during plant evolution, which provides the plants to obtain climbing ability. However, the tendril morphogenesis is poorly understood. A novel tendril morphogenesis defective mutant (tmd1) was identified in cucumber. The apical part of tendril was replaced by a leaf blade in tmd1 mutant, and it lost the climbing ability. Map-based cloning, qPCR detection, bioinformatic analysis, yeast one-hybrid assay, electrophoretic mobility shift assay, and luciferase assay were used to explore the molecular mechanism of CsaTMD1 in regulating tendril morphogenesis. CsaUFO was the candidate causal gene, and a fragment deletion within promoter impaired CsaUFO expression in tmd1 mutant. A conserved motif 1, which harbored two putative TCP transcription factor binding sites, was located within this deleted fragment. CsaTEN directly bound the motif 1 and positively regulated CsaUFO, and mutation in motif 1 removed this regulation. Our work shows a CsaTEN-CsaUFO module in regulating tendril morphogenesis, indicating that evolution of tendril in cucumber due to simply drive of CsaUFO by CsaTEN in tendril. Additionally, the conserved motif 1 provides a strategy for engineering tendril-less Cucurbitaceae crops.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
364-373Informations de copyright
© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
Références
Boss PK, Thomas MR. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416: 847-850.
Chen F, Fu B, Pan Y, Zhang C, Wen H, Weng Y, Chen P, Li Y. 2017. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Theoretical and Applied Genetics 130: 1549-1558.
Chen Y, Wen H, Pan J, Du H, Zhang K, Zhang L, Yu Y, He H, Cai R, Pan J et al. 2021. CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics 134: 2141-2150.
Darwin C. 1875. The movements and habits of climbing plants. London, UK: John Murray.
Gentry A. 1991. The distribution and evolution of climbing plants. In: The biology of vines. New York, NY, USA: Cambridge University Press.
Gerrath JM, Guthrie TB, Zitnak TA, Posluszny U. 2008. Development of the axillary bud complex in Echinocystis lobata (Cucurbitaceae): interpreting the cucurbitaceous tendril. American Journal of Botany 95: 773-781.
Gianoli E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society of London. Series B: Biological Sciences 271: 2011-2015.
Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, Huang CH, Ma H. 2020. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Molecular Plant 13: 1117-1133.
Hirabayashi T, Oizumi T, Sato K, Kote T, Yoshida S, Matsuo T, Komatsuka T. 2007. Breeding of tendril-less type melo cultivar ‘TL Takami’ and its characteristics. Horticultural Research 6: 313-316.
Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C et al. 2009. Tendril-less regulates tendril formation in pea leaves. Plant Cell 21: 420-428.
Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES. 1995. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7: 1501-1510.
Jaffe M, Galston A. 1968. The physiology of tendril. Annual Review of Plant Physiology 19: 417-434.
Levin JZ, Meyerowitz EM. 1995. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7: 529-548.
Liu X, Hao N, Li H, Ge D, Du Y, Liu R, Wen C, Li Y, Zhang X, Wu T. 2019. PINOID is required for lateral organ morphogenesis and ovule development in cucumber. Journal of Experimental Botany 70: 5715-5730.
Mizuno S, Sonoda M, Tamura Y, Nishino E, Suzuki H, Sato T, Oizumi T. 2015. Chiba tendril-less locus determines tendril organ identity in melon (Cucumis melo L.) and potentially encodes a tendril-specific TCP homolog. Journal of Plant Research 128: 941-951.
Oizumi T, Hirabayashi T, Kote T, Matsuo T. 2005. Growth and inheritance characteristics of new melon tendrilless type cultivar ‘Chiba TL’. Bulletin of the Chiba Prefectural Agriculture Research Center 4: 69-75.
Simon R, Carpenter R, Doyle S, Coen E. 1994. Fimbriata controls flower development by mediating between meristem and organ identity genes. Cell 78: 99-107.
Song M, Cheng F, Wang J, Wei Q, Fu W, Yu X, Li J, Chen J, Lou Q. 2019. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber (Cucumis sativus L.). Journal of Integrative Plant Biology 61: 1000-1014.
Sousa-Baena MS, Lohmann LG, Hernandes-Lopes J, Sinha NR. 2018a. The molecular control of tendril development in angiosperms. New Phytologist 218: 944-958.
Sousa-Baena MS, Lohmann LG, Rossi M, Sinha NR. 2014a. Acquisition and diversification of tendrilled leaves in Bignonieae (Bignoniaceae) involved changes in expression patterns of SHOOTMERISTEMLESS (STM), LEAFY/FLORICAULA (LFY/FLO), and PHANTASTICA (PHAN). New Phytologist 201: 993-1008.
Sousa-Baena MS, Sinha NR, Hernandes-Lopes J, Lohmann LG. 2018b. Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Frontiers in Plant Science 9: 403.
Sousa-Baena MS, Sinha NR, Lohmann LG. 2014b. Evolution and development of tendrils in Bignonieae (Lamiales, Bignoniaceae). Annals of the Missouri Botanical Garden 99: 323-347.
Wang S, Yang X, Xu M, Lin X, Lin T, Qi J, Shao G, Tian N, Yang Q, Zhang Z et al. 2015. Rare SNP identified a TCP transcription factor essential for tendril development in cucumber. Molecular Plant 8: 1795-1808.
Wilkinson MD, Haughn GW. 1995. UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell 7: 1485-1499.
Yang X, Yan J, Zhang Z, Lin T, Xin T, Wang B, Wang S, Zhao J, Zhang Z, Lucas WJ et al. 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nature Plants 6: 809-822.
Zhang C, Chen F, Zhao Z, Hu L, Liu H, Cheng Z, Weng Y, Chen P, Li Y. 2018. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 131: 1379-1389.
Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R. 2012. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 124: 249-259.