Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions.
chromatin biology
cryoelectron microscopy single-particle analysis
dissociation rate compensation mechanism
gene regulation
nucleosome-depleted regions
pioneer transcription factors
single-molecule measurement
Journal
Molecular cell
ISSN: 1097-4164
Titre abrégé: Mol Cell
Pays: United States
ID NLM: 9802571
Informations de publication
Date de publication:
20 04 2023
20 04 2023
Historique:
received:
09
08
2022
revised:
13
01
2023
accepted:
06
03
2023
pmc-release:
20
04
2024
medline:
25
4
2023
pubmed:
31
3
2023
entrez:
30
3
2023
Statut:
ppublish
Résumé
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Identifiants
pubmed: 36996811
pii: S1097-2765(23)00163-6
doi: 10.1016/j.molcel.2023.03.006
pmc: PMC10182836
mid: NIHMS1895324
pii:
doi:
Substances chimiques
Nucleosomes
0
Histones
0
Chromatin
0
Transcription Factors
0
CBF1 protein, S cerevisiae
0
Saccharomyces cerevisiae Proteins
0
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1251-1263.e6Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM139564
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM086252
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM121858
Pays : United States
Organisme : NIH HHS
ID : S10 OD026822
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM127034
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM131626
Pays : United States
Organisme : NIGMS NIH HHS
ID : U24 GM129547
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016058
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM139654
Pays : United States
Informations de copyright
Copyright © 2023. Published by Elsevier Inc.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Cell. 2013 Sep 12;154(6):1232-45
pubmed: 24034247
Methods. 2019 Apr 15;159-160:138-145
pubmed: 30599195
Methods Enzymol. 1992;211:353-88
pubmed: 1406315
Biophys J. 2009 Dec 16;97(12):3196-205
pubmed: 20006957
Protein Sci. 2018 Jan;27(1):293-315
pubmed: 29067766
Mol Syst Biol. 2011 Oct 11;7:539
pubmed: 21988835
Methods Enzymol. 2016;579:125-57
pubmed: 27572726
Mol Cell. 2018 Jul 19;71(2):294-305.e4
pubmed: 30017582
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12610-5
pubmed: 17640918
J Mol Biol. 1993 Dec 5;234(3):779-815
pubmed: 8254673
EMBO J. 1997 Aug 1;16(15):4689-97
pubmed: 9303313
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Nature. 2020 Apr;580(7805):669-672
pubmed: 32350470
J Biol Chem. 2000 Dec 29;275(52):41364-8
pubmed: 11024014
Methods Mol Biol. 2013;981:177-92
pubmed: 23381862
J Mol Biol. 2001 Apr 6;307(4):977-85
pubmed: 11286549
Mol Cell. 1999 Dec;4(6):961-9
pubmed: 10635321
Genome Res. 2013 Jun;23(6):966-76
pubmed: 23403035
J Biol Methods. 2014;1(2):
pubmed: 25606571
Cell Rep. 2019 Apr 9;27(2):374-386.e4
pubmed: 30970243
Science. 1996 Jan 12;271(5246):209-12
pubmed: 8539622
Nat Struct Mol Biol. 2005 Jan;12(1):46-53
pubmed: 15580276
Genes Dev. 2009 Apr 1;23(7):804-9
pubmed: 19339686
Cell Rep. 2022 Aug 23;40(8):111250
pubmed: 36001970
Commun Biol. 2021 Jul 15;4(1):874
pubmed: 34267316
Mol Cell Biol. 1995 Mar;15(3):1405-21
pubmed: 7862134
Genome Biol. 2022 Oct 17;23(1):221
pubmed: 36253868
Stem Cell Reports. 2016 Nov 8;7(5):955-969
pubmed: 28157484
J Mol Biol. 2011 Aug 12;411(2):430-48
pubmed: 21669206
Protein Sci. 2018 Jan;27(1):112-128
pubmed: 28836357
Protein Sci. 2021 Jan;30(1):70-82
pubmed: 32881101
J Mol Biol. 2000 Apr 28;298(2):211-23
pubmed: 10764592
Protein Expr Purif. 2005 Apr;40(2):385-95
pubmed: 15766881
Nucleic Acids Res. 2001 Mar 1;29(5):1054-60
pubmed: 11222754
Methods. 2014 Dec;70(2-3):108-18
pubmed: 25304387
Elife. 2019 Mar 19;8:
pubmed: 30888317
Development. 2005 Jun;132(12):2685-95
pubmed: 15930108
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
EMBO J. 1998 Jan 2;17(1):244-54
pubmed: 9427758
Annu Rev Biochem. 2020 Jun 20;89:189-212
pubmed: 32208766
Nucleic Acids Res. 2014 Mar;42(5):3017-27
pubmed: 24353316
Dev Cell. 2010 Apr 20;18(4):544-55
pubmed: 20412770
Mol Cell. 2011 Jun 24;42(6):826-36
pubmed: 21700227
Chem Soc Rev. 2014 Feb 21;43(4):1221-9
pubmed: 24056732
Methods Enzymol. 2016;581:379-415
pubmed: 27793287
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
EMBO J. 2019 Jun 17;38(12):
pubmed: 31101674
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877
pubmed: 31588918
Nucleic Acids Res. 2014 Sep;42(15):9753-60
pubmed: 25114052
Methods Enzymol. 2016;573:43-65
pubmed: 27372748
Science. 2007 Jan 12;315(5809):233-7
pubmed: 17218526
Gene. 1993 Sep 6;131(1):129-34
pubmed: 8370533
Elife. 2018 Nov 09;7:
pubmed: 30412051
Nucleic Acids Res. 2012 Nov 1;40(20):10215-27
pubmed: 22965129
Nat Struct Mol Biol. 2004 Aug;11(8):763-9
pubmed: 15258568
Nat Commun. 2013;4:2183
pubmed: 23873306
J Mol Biol. 1998 Feb 13;276(1):19-42
pubmed: 9514715
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530
pubmed: 29872003
Genome Biol. 2004;5(6):226
pubmed: 15186484
Genome Res. 2018 Apr;28(4):497-508
pubmed: 29563167
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1536-1541
pubmed: 28137832
Development. 2005 Sep;132(17):4005-14
pubmed: 16079152
Biophys J. 2013 Mar 5;104(5):1081-8
pubmed: 23473491
Biophys J. 2016 Jul 26;111(2):273-282
pubmed: 27463130
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7414-8
pubmed: 21502529
Genes Dev. 2011 Nov 1;25(21):2227-41
pubmed: 22056668
Nature. 1997 Sep 18;389(6648):251-60
pubmed: 9305837
Mol Cell. 2011 May 20;42(4):465-76
pubmed: 21596311
J Mol Biol. 1995 Nov 24;254(2):130-49
pubmed: 7490738
Genes Dev. 2014 Dec 15;28(24):2679-92
pubmed: 25512556
Mol Cell. 2019 Sep 5;75(5):921-932.e6
pubmed: 31303471
Nucleic Acids Res. 2021 May 7;49(8):4750-4767
pubmed: 33856458
Science. 2020 Jun 26;368(6498):1460-1465
pubmed: 32327602
Nat Methods. 2008 Jun;5(6):507-16
pubmed: 18511918
Nature. 2005 Jun 16;435(7044):944-7
pubmed: 15959514
Curr Protoc Bioinformatics. 2020 Dec;72(1):e108
pubmed: 33315308
J Mol Biol. 2010 Oct 15;403(1):1-10
pubmed: 20800598
Mol Cell Proteomics. 2018 Oct;17(10):2018-2033
pubmed: 30021884
Science. 1999 May 7;284(5416):977-80
pubmed: 10320381
J Biosci. 2020;45:
pubmed: 31965991
Cell. 2015 Apr 23;161(3):555-568
pubmed: 25892221
Protein Sci. 2000 Dec;9(12):2354-65
pubmed: 11206057
J Struct Biol. 2012 Dec;180(3):519-30
pubmed: 23000701
Trends Genet. 2010 Nov;26(11):476-83
pubmed: 20832136
Elife. 2020 Aug 06;9:
pubmed: 32758356