Isolation and physiological properties of methanogenic archaea that degrade tetramethylammonium hydroxide.


Journal

Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612

Informations de publication

Date de publication:
May 2023
Historique:
received: 08 12 2022
accepted: 17 03 2023
revised: 15 03 2023
medline: 18 4 2023
pubmed: 1 4 2023
entrez: 31 3 2023
Statut: ppublish

Résumé

Tetramethylammonium hydroxide (TMAH) is a known toxic chemical used in the photolithography process of semiconductor photoelectronic processes. Significant amounts of wastewater containing TMAH are discharged from electronic industries. It is therefore attractive to apply anaerobic treatment to industrial wastewater containing TMAH. In this study, a novel TMAH-degrading methanogenic archaeon was isolated from the granular sludge of a psychrophilic upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater containing TMAH. Although the isolate (strain NY-STAYD) was phylogenetically related to Methanomethylovorans uponensis, it was the only isolated Methanomethylovorans strain capable of TMAH degradation. Strain NY-STAYD was capable of degrading methylamine compounds, similar to the previously isolated Methanomethylovorans spp. While the strain was able to grow at temperatures ranging from 15 to 37°C, the cell yield was higher at lower temperatures. The distribution of archaeal cells affiliated with the genus Methanomethylovorans in the original granular sludge was investigated by fluorescence in situ hybridization (FISH) using specific oligonucleotide probe targeting 16S rRNA. The results demonstrated that the TMAH-degrading cells associated with the genus Methanomethylovorans were not intermingled with other microorganisms but rather isolated on the granule's surface as a lone dominant archaeon. KEY POINTS: • A TMAH-degrading methanogenic Methanomethylovorans strain was isolated • This strain was the only known Methanomethylovorans isolate that can degrade TMAH • The highest cell yield of the isolate was obtained at psychrophilic conditions.

Identifiants

pubmed: 37000227
doi: 10.1007/s00253-023-12488-2
pii: 10.1007/s00253-023-12488-2
doi:

Substances chimiques

Wastewater 0
Sewage 0
tetramethylammonium H0W55235FC
RNA, Ribosomal, 16S 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3047-3056

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925. https://doi.org/10.1128/aem.56.6.1919-1925.1990
Asakawa S, Sauer K, Liesack W, Thauer RK (1998) Tetramethylammonium:coenzyme M methyltransferase system from Methanococcoides sp. Arch Microbiol 170:220–226. https://doi.org/10.1007/s002030050636
doi: 10.1007/s002030050636 pubmed: 9732435
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9 pubmed: 31341288 pmcid: 7015180
Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552. https://doi.org/10.1021/ie50507a033
doi: 10.1021/ie50507a033
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8
doi: 10.1038/ismej.2012.8 pubmed: 22402401 pmcid: 3400413
Cha I-T, Min U-G, Kim S-J, Yim KJ, Roh SW, Rhee S-K (2013) Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie Van Leeuwenhoek 104(6):1005–1012
Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444. https://doi.org/10.1016/S0723-2020(99)80053-8
doi: 10.1016/S0723-2020(99)80053-8 pubmed: 10553296
Danshita T, Miyaoka Y, Matsuura N, Sumino H, Yamaguchi T, Syutsubo K (2018) Influence of tetramethylammonium hydroxide (TMAH) on the microbial properties of anaerobic granular sludge acclimated to isoplophyl alcohol (IPA) wastewater under psychrophilic conditions. J Environ Sci Health A 53:1015–1021. https://doi.org/10.1080/10934529.2018.1471034
doi: 10.1080/10934529.2018.1471034
DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689. https://doi.org/10.1073/pnas.89.12.5685
doi: 10.1073/pnas.89.12.5685 pubmed: 1608980 pmcid: 49357
Ferella F, Innocenzi V, Zueva S, Corradini V, Ippolito NM, Birloaga IP, De Michelis I, Prisciandaro M, Vegliò F (2019) Aerobic treatment of waste process solutions from the semiconductor industry: from lab to pilot scale. Sustain Sci Pract Policy 11:3923. https://doi.org/10.3390/su11143923
doi: 10.3390/su11143923
Gomec CY (2010) High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: a review on benefits and drawbacks. J Environ Sci Health A 45:1169–1184. https://doi.org/10.1080/10934529.2010.493774
doi: 10.1080/10934529.2010.493774
Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213. https://doi.org/10.1111/j.1472-765x.1992.tb00765.x
doi: 10.1111/j.1472-765x.1992.tb00765.x pubmed: 1280147
Hu T-H, Whang L-M, Liu P-WG, Hung Y-C, Chen H-W, Lin L-B, Chen C-F, Chen S-K, Hsu SF, Shen W, Fu R, Hsu R (2012) Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresour Technol 113:303–310. https://doi.org/10.1016/j.biortech.2012.02.070
doi: 10.1016/j.biortech.2012.02.070 pubmed: 22456234
Hu T-H, Whang L-M, Huang C-Y (2018) Methanogenic degradation of tetramethylammonium hydroxide by Methanomethylovorans and Methanosarcina. J Hazard Mater 357:180–186. https://doi.org/10.1016/j.jhazmat.2018.05.059
doi: 10.1016/j.jhazmat.2018.05.059 pubmed: 29886363
Iguchi A, Terada T, Narihiro T, Yamaguchi T, Kamagata Y, Sekiguchi Y (2009) In situ detection and quantification of uncultured members of the phylum Nitrospirae abundant in methanogenic wastewater treatment systems. Microbes Environ 24:97–104. https://doi.org/10.1264/jsme2.me08562
doi: 10.1264/jsme2.me08562 pubmed: 21566361
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. https://doi.org/10.1093/nar/gkn201
doi: 10.1093/nar/gkn201 pubmed: 18440982 pmcid: 2447716
Jiang B, Parshina SN, van Doesburg W, Lomans BP, Stams AJM (2005) Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(Pt 6):2465–2470
Lin C-C, Yang C-C, Ger J, Deng J-F, Hung D-Z (2010) Tetramethylammonium hydroxide poisoning. Clin Toxicol 48:213–217. https://doi.org/10.3109/15563651003627777
doi: 10.3109/15563651003627777
Liu B, Yoshinaga K, Wu J-H, Chen W-Y, Terashima M, Goel R, Pangallo D, Yasui H (2016) Kinetic analysis of biological degradation for tetramethylammonium hydroxide (TMAH) in the anaerobic activated sludge system at ambient temperature. Biochem Eng J 114:42–49. https://doi.org/10.1016/j.bej.2016.06.020
doi: 10.1016/j.bej.2016.06.020
Lomans BP, Maas R, Luderer R, Op den Camp HJ, Pol A, van der Drift C, Vogels GD (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65(8):3641–3650
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. https://doi.org/10.1093/nar/gkh293
doi: 10.1093/nar/gkh293 pubmed: 14985472 pmcid: 390282
Mawston N (2021) Half the World Owns a Smartphone. Strategy Analytics
Mori IC, Arias-Barreiro CR, Koutsaftis A, Ogo A, Kawano T, Yoshizuka K, Inayat-Hussain SH, Aoyama I (2015) Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide. Chemosphere 120:299–304. https://doi.org/10.1016/j.chemosphere.2014.07.011
doi: 10.1016/j.chemosphere.2014.07.011 pubmed: 25151133
Nakamura K, Tamaki H, Kang MS, Mochimaru H, Lee S-T, Nakamura K, Kamagata Y (2011) A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms. Microbes Environ 26:301–306. https://doi.org/10.1264/jsme2.me11120
doi: 10.1264/jsme2.me11120 pubmed: 21685714
Ohara M, Katayama Y, Tsuzaki M, Nakamoto S, Kuraishi H (1990) Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int J Syst Bacteriol 40:292–296. https://doi.org/10.1099/00207713-40-3-292
doi: 10.1099/00207713-40-3-292 pubmed: 2397197
Peter F, Swamy K (1996) Anaerobic treatment of high-sulfate wastewater and substrate interactions with isopropanol. J Environ Eng 122:989–994. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:11(989)
doi: 10.1061/(ASCE)0733-9372(1996)122:11(989)
Rebac S, van Lier JB, Lens P, Stams AJM, Dekkers F, Th M, Swinkels K, Lettinga G (1999) Psychrophilic anaerobic treatment of low strength wastewaters. Water Sci Technol 39:203–210. https://doi.org/10.2166/wst.1999.0240
doi: 10.2166/wst.1999.0240
Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331. https://doi.org/10.1128/AEM.03008-06
doi: 10.1128/AEM.03008-06 pubmed: 17483259 pmcid: 1932770
Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288. https://doi.org/10.1128/AEM.65.3.1280-1288.1999
doi: 10.1128/AEM.65.3.1280-1288.1999 pubmed: 10049894 pmcid: 91175
Syutsubo K, Danshita T, Sumino H, Iguchi A, Takemura Y (2021) Microbial properties of the granular sludge in a psychrophilic UASB reactor fed with electronics industry wastewater containing organic chemicals. J Environ Sci Health A 56:516–524. https://doi.org/10.1080/10934529.2021.1890960
doi: 10.1080/10934529.2021.1890960
Tanaka K (1994) Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. J Ferment Bioeng 78:386–388. https://doi.org/10.1016/0922-338X(94)90287-9
doi: 10.1016/0922-338X(94)90287-9
Wang Y, Zhang Z, Jiang C, Xu T (2013) Electrodialysis process for the recycling and concentrating of tetramethylammonium hydroxide (TMAH) from photoresist developer wastewater. Ind Eng Chem Res 52:18356–18361. https://doi.org/10.1021/ie4023995
doi: 10.1021/ie4023995
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
doi: 10.1128/jb.173.2.697-703.1991 pubmed: 1987160 pmcid: 207061
Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400. https://doi.org/10.1007/BF00406470
Wu Y-J, Irmayani L, Setiyawan AA, Whang L-M (2020) Aerobic degradation of high tetramethylammonium hydroxide (TMAH) and its impacts on nitrification and microbial community. Chemosphere 258:127146. https://doi.org/10.1016/j.chemosphere.2020.127146

Auteurs

Akinori Iguchi (A)

Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City, Niigata, 956-8603, Japan.

Yasuyuki Takemura (Y)

Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.

Tsuyoshi Danshita (T)

Department of Civil Engineering and Architecture, National Institute for Technology, Tokuyama College, 3538 Gakuendai, Shunan, Yamaguchi, 745-8585, Japan.

Takuya Kurihara (T)

Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City, Niigata, 956-8603, Japan.

Masataka Aoki (M)

Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.

Saori Hori (S)

Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City, Niigata, 956-8603, Japan.

Toru Shigematsu (T)

Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), 265-1, Higashijima, Akiha-ku, Niigata City, Niigata, 956-8603, Japan.

Kazuaki Syutsubo (K)

Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan. stubo@nies.go.jp.
Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. stubo@nies.go.jp.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Lakes Salinity Archaea Bacteria Microbiota
Charcoal Soil Microbiology Soil Biomass Carbon
Streptomyces Biofilms Anti-Bacterial Agents Peptides, Cyclic Microbial Sensitivity Tests

Classifications MeSH