Role of aquaporin 3 in reproductive performance of dairy goats after repeated estrus synchronization stimulation.
AQP3
RNA sequencing
dairy goat
ovary
repeated estrus synchronization
Journal
Reproduction in domestic animals = Zuchthygiene
ISSN: 1439-0531
Titre abrégé: Reprod Domest Anim
Pays: Germany
ID NLM: 9015668
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
revised:
29
03
2023
received:
01
12
2022
accepted:
04
04
2023
medline:
6
6
2023
pubmed:
8
4
2023
entrez:
7
4
2023
Statut:
ppublish
Résumé
This study explored the specific molecular mechanisms through which repeated estrus synchronization (ES) treatments reduce the reproductive performance of dairy goats. Ninety-six goats (n = 24/group) were randomly assigned to two groups receiving ES treatments thrice every fortnight (3-equine chorionic gonadotropin [eCG] and 3-follicle stimulating hormone [FSH] groups) and two groups receiving one ES treatment (1-eCG and 1-FSH groups). ES treatments of 1- and 3-eCG goats were performed via the intravaginal insertion of a controlled internal drug release (CIDR) device containing 300 mg progesterone (P4), followed by 300 IU eCG injections 48 h before CIDR withdrawal. The 1- and 3-FSH goats received CIDR for 10 days, followed by 50 IU FSH and 100 μg PGF2α within 12 h of CIDR withdrawal. Ovaries of three goats in estrus from both groups were harvested for analysis. Subsequently, all the goats in estrus were artificially inseminated twice. Consequently, 3-eCG and 3-FSH goats showed a considerably reduced estrus rate and litter size than 1-eCG and 1-FSH goats. AQP3 mRNA and protein expression were significantly higher in the 3-eCG and 3-FSH groups than in the 1-eCG and 1-FSH groups. AQP3 overexpression led to cell apoptosis and decreased steroid hormone secretion ability of ovarian granulosa cells. Moreover, it resulted in a decrease in maturation and cleavage rates after parthenogenetic activation and in vitro fertilization, respectively. AQP3 gene was involved in reducing the reproductive performance of repeated ES-treated dairy goats. These findings provide a theoretical foundation for the effective use of reproductive hormones in breeding techniques for livestock.
Substances chimiques
Aquaporin 3
158801-98-0
Progesterone
4G7DS2Q64Y
Follicle Stimulating Hormone
9002-68-0
Follicle Stimulating Hormone, Human
0
Dinoprost
B7IN85G1HY
Types de publication
Randomized Controlled Trial, Veterinary
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
851-859Subventions
Organisme : Doctoral Program of Nanyang Normal University
ID : 218312
Organisme : Key Research and Development Plan of Shaanxi Province
ID : 2021ZDLNY02-02
Organisme : National Key Research and Development Program of China
ID : 2021YFD1600700
Informations de copyright
© 2023 Wiley-VCH GmbH. Published by John Wiley & Sons Ltd.
Références
Araya, L. E., Soni, I. V., Hardy, J. A., & Julien, O. (2021). Deorphanizing Caspase-3 and Caspase-9 substrated in and out of apoptosis with deep substrate profiling. ACS Chemical Biology, 16(11), 2280-2296. https://doi.org/10.1021/acschembio.1c00456
Baril, G., Remy, B., Vallet, J. C., & Beckers, J. F. (2010). Effect of repeated use of progestagen-PMSG treatment for estrus control in dairy goats out of breeding season. Reproduction Domestic Animals, 27(3), 161-168. https://doi.org/10.1111/j.1439-0531.1992.tb00721.x
Bernal, A., & Paolieri, D. (2022). The influence of estradiol andprogesterone on neurocognition during three phases of the menstrual cycle: Modulating factors. Behavioural Brain Research, 417, 113593. https://doi.org/10.1016/j.bbr.2021.113593
Canipari, R. (2000). Oocyte-granulosa cell interactions. Human Reproduction Update, 6(3), 279-289. https://doi.org/10.1093/humupd/6.3.279
Chao, H. T., Lee, S. Y., Lee, H. M., Liao, T. L., Wei, Y. H., & Kao, S. H. (2005). Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Annals of the New York Academy of Sciences, 1042, 148-156. https://doi.org/10.1196/annals.1338.016
Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q. X., Ma, T., & Duan, E. (2010). Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration. Cell Research, 21(6), 922-933. https://doi.org/10.1038/cr.2010.169
Dejean LM, Mahmood B, Saaman N, Kasnakjian L. Bcl-2 overexpression stimulates cell proliferation and lactic fermentation without affecting whole cell respiration. (2022). Biophysical Journal 121(3):512a. https://doi.org/10.1016/j.bpj.2019.11.857
Di Luigi, G., Rossi, G., Castellucci, A., Leocata, P., Carta, G., Canipari, R., Nottola, S. A., & Cecconi, S. (2014). Repeated ovarian stimulation does not affect the expression level of proteins involved in cell cycle control in mouse ovaries and fallopian tubes. Journal of Assisted Reproduction and Genetics, 31(6), 717-724. https://doi.org/10.1007/s10815-014-0198-z
Dong, G., Guo, Y., Cao, H., Zhou, T., Zhou, Z., Sha, J., Guo, X., & Zhu, H. (2014). Long-term effects of repeated superovulation on ovarian structure and function in rhesus monkeys. Fertility & Sterility, 102(5), 1452-1457. https://doi.org/10.1007/s10815-017-0872-z
Drion, P. V., Furtoss, V., Baril, G., Manfredi, E., Bouvier, F., Pougnard, J. L., Bernelas, D., Caugnon, P., Mcnamara, E. M., Remy, B., Sulon, J., Beckers, J. F., Bodin, L., & Lebceuf, B. (2001). Four years of induction/synchronization of estrus in dairy goats: Effect on the evolution of eCG binding rate in relation with the parameters of reproduction. Reproduction Nutrition Development, 41(5), 401-412. https://doi.org/10.1051/rnd:2001140
Forcada, F., Ait, A.-M. M., Abecia, J. A., Maurel, M. C., Cebrián-Pérez, J. A., Muiño-Blanco, T., Asenjo, B., Vázquez, M. I., & Casao, A. (2011). Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75(4), 769-776. https://doi.org/10.1016/j.theriogenology.2010.10.019
Freiburghaus, C., Emruli, V. K., Johansson, A., Eskelund, C. W., Grønbaek, K., Olsson, R., Ek, F., Jerkeman, M., & Ek, S. (2018). Bortezomib prevents cytarabine resistance in MCL, which is characterized by down-regulation of dCK and up-regulation of SPIB resulting in high NF-κB activity. BMC Cancer, 18(1), 466. https://doi.org/10.1186/s12885-018-4346-1
Habeeb, H., & Kutzler, M. A. (2021). Estrus synchronization in the sheep and goat. Veterinary Clinics of North America Food Animal Practice, 37(1), 125-137.
Ibrahim, N. S., Noor, N. N. M., & Nasruddin, N. N. A. B. M. (2022). Evaluation of growth parameters and body condition score on weaning stages of Saanen goats. Journal of Advanced Veterinary and Animal Research, 9(3), 527-535. https://doi.org/10.5455/javar.2022.i622
Im, J. W., Lee, C. Y., Kim, D. H., & Bae, H. R. (2020). Differential expressions of aquaporin subtypes in female reproductive tract of mice. Development & Reproduction, 24(3), 177-185. https://doi.org/10.1016/j.anireprosci.2021.106735
Jun Woo, J., Byung Chul, J., Suk, S. C., Seok Hyun, K., Young Min, C., Jung, G. K., & Shin, Y. M. (2011). Effect of maturation on the expression of aquaporin 3 in mouse oocyte. Zygote, 19(1), 9-14. https://doi.org/10.1017/S0967199410000171
Krisher, R. L. (2022). Present state and future outlook for the application of in vitro oocyte maturation in human infertility treatment. Biology of Reproduction, 106(2), 235-242. https://doi.org/10.1093/biolre/ioac010
Li, Z., Wang, J., Zhao, Y., Ma, D., Zhao, M., Li, N., Men, Y., Zhang, Y., Chu, H., Lei, C., Shen, W., El-Mahdy Othman, O., & Min, L. (2021). scRNA-seq of ovarian follicle granulosa cells from different fertility goats reveals distinct expression patterns. Reproduction in Domestic Animals, 56(5), 801-811. https://doi.org/10.1111/rda.13920
Matsumoto, S., Tanaka, T., & Endo, N. (2021). Intravaginal administration of estradiol benzoate capsule for estrus synchronization in goats. The Journal of Reproduction and Development., 67(2), 83-88. https://doi.org/10.1262/jrd.2020-126
Qi, C., & En-Kui, D. (2011). Aquaporins in sperm osmoadaptation: An emerging role for volume regulation. Acta Pharmacologica Sinica, 32(6), 721-724. https://doi.org/10.1038/aps.2011.35
Sithole, S. M., Mphaphathi, M. L., Sebopela, M. D., & Nedambale, T. L. (2021). Comparison of two invitro maturation media on polar body extrusion of cattle oocytes. Reproduction Fertility and Development, 33(2), 176.
Sun, S., Li, C., Liu, S., Luo, J., Chen, Z., Zhang, C., Zhang, T., Huang, J., & Xi, L. (2018). RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats. Reproduction Fertility & Development, 30(12), 1622-1633. https://doi.org/10.1071/RD17511
Sun, S., Liu, S., Luo, J., Chen, Z., Li, C., Loor, J. J., & Cao, Y. (2019). Repeated pregnant mare serum gonadotropin-mediated oestrous synchronization alters gene expression in the ovaries and reduces reproductive performance in dairy goats. Reproduction in Domestic Animals, 54(6), 873-881. https://doi.org/10.1111/rda.13439
Sun, S., Liu, S., Luo, J., Chen, Z., Yang, Y., Shi, H., & Luo, J. N. (2019). Effects of repeated exposure to an estrus synchronization protocol on reproductive parameters in dairy goats. Canadian Journal of Animal Science, 99, 489-496. https://doi.org/10.1139/CJAS-2017-0183
Teng, Y., Guo, B. L., Mu, X. S., & Liu, S. H. (2018). KIF26B promotes cell proliferation and migration through the FGF2/ERK signaling pathway in breast cancer. Biomedicine & Pharmacotherapy, 108, 766-773. https://doi.org/10.1016/j.biopha.2018.09.036
Vieira, A., Brandão, S., Monteiro, A., Ajuda, I., & Stilwell, G. (2015). Development and validation of a visual body condition scoring system for dairy goats with picture-based training. Journal of Dairy Science., 98(9), 6597-6608. https://doi.org/10.3168/jds.2015-9428
Wu, G., Lv, C., Memon, S., Liang, J., Zhao, X., Ouyang, Y., Wang, S., Jiang, Y., Shao, Q., Hong, Q., & Quan, G. (2020). The presence of synthetic polymers in the maturation medium affects the cryotolerance and developmental capacity after parthenogenic activation of vitrified goat oocytes. Cryobiology, 93, 84-90. https://doi.org/10.1016/j.cryobiol.2020.02.004