A Universal Microscopic Patterned Doping Method for Perovskite Enables Ultrafast, Self-Powered, Ultrasmall Perovskite Photodiodes.
ion migration
passivation
perovskites
photodiodes
self-doping
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
revised:
01
04
2023
received:
21
01
2023
medline:
17
7
2023
pubmed:
9
4
2023
entrez:
8
4
2023
Statut:
ppublish
Résumé
Novel metal halide perovskite is proven to be a promising optoelectronic material. However, fabricating microscopic perovskite devices is still challenging because the perovskite is soluble with the photoresist, which conflicts with conventional microfabrication technology. The size of presently reported perovskite devices is about 50 µm. Limited by the large size of perovskite optoelectronic devices, they cannot be readily adopted in the fields of imaging, display, etc. Herein a universal microscopic patterned doping method is proposed, which can realize microscale perovskite devices. Rather than by the conventional doping method, in this study the local Fermi level of perovskite is modulated by the redistributing intrinsic ion defects via a polling voltage. A satisfactorily stable polarized ion distribution can be achieved by optimization of the perovskite material and polling voltage, resulting in ultrafast (40 µs), self-powered microscale (2 µm) photodiodes. This work sheds light on a route to fabricate integrated perovskite optoelectronic chips.
Identifiants
pubmed: 37030008
doi: 10.1002/adma.202300691
doi:
Substances chimiques
perovskite
12194-71-7
Calcium Compounds
0
Oxides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300691Subventions
Organisme : Beijing Natural Science Foundation
ID : JQ20027
Organisme : Beijing Natural Science Foundation
ID : 4222065
Organisme : National Natural Science Foundation of China
ID : 62034001
Organisme : National Natural Science Foundation of China
ID : 61974008
Organisme : National Natural Science Foundation of China
ID : 52073005
Organisme : National Natural Science Foundation of China
ID : 22033006
Organisme : National Natural Science Foundation of China
ID : 62005003
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
Y. Shao, Y. Yuan, J. Huang, Nat. Energy 2016, 1, 15001.
J. A. Christians, P. Schulz, J. S. Tinkham, T. H. Schloemer, S. P. Harvey, B. J. Tremolet De Villers, A. Sellinger, J. J. Berry, J. M. Luther, Nat. Energy 2018, 3, 68.
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, E. H. Sargent, ACS Photonics 2015, 2, 1117.
P. Lopez-Varo, J. A. Jiménez-Tejada, M. García-Rosell, S. Ravishankar, G. Garcia-Belmonte, J. Bisquert, O. Almora, Adv. Energy Mater. 2018, 8, 1702772.
J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2017, 10, 710.
Y. Yuan, J. Huang, Acc. Chem. Res. 2016, 49, 286.
M. C. Yen, C. J. Lee, K. H. Liu, Y. Peng, J. Leng, T. H. Chang, C. C. Chang, K. Tamada, Y. J. Lee, Nat. Commun. 2021, 12, 4460.
X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, Y. Zhou, F. Pan, S. T. Han, Nano Energy 2020, 78, 105246.
X. Guan, Y. Wang, C. H. Lin, L. Hu, S. Ge, T. Wan, A. Younis, F. Li, Y. Cui, D. C. Qi, D. Chu, X. D. Chen, T. Wu, Appl. Phys. Rev. 2020, 7, 031401.
C. T. Herrera, J. G. Labram, Appl. Phys. Lett. 2020, 117, 233501.
X. Han, W. Wu, H. Chen, D. Peng, L. Qiu, P. Yan, C. Pan, Adv. Funct. Mater. 2021, 31, 2005230.
M. Hasan, S. Venkatesan, D. Lyashenko, J. D. Slinker, A. Zakhidov, Anal. Chem. 2017, 89, 9649.
Y. Song, W. Bi, A. Wang, X. Liu, Y. Kang, Q. Dong, Nat. Commun. 2020, 11, 274.
Y. Liu, Q. Dong, Y. Fang, Y. Lin, Y. Deng, J. Huang, Adv. Funct. Mater. 2019, 29, 1807707.
S. J. Yang, M. Kim, H. Ko, D. H. Sin, J. H. Sung, J. Mun, J. Rho, M. H. Jo, K. Cho, Adv. Funct. Mater. 2018, 28, 1804067.
W. J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 2014, 104, 063903.
S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, D. S. Ginger, J. Phys. Chem. C 2018, 122, 12633.
D. Pan, Y. Fu, J. Chen, K. J. Czech, J. C. Wright, S. Jin, Nano Lett. 2018, 18, 1807.
G. Y. Kim, A. Senocrate, T. Yang, G. Gregori, M. Grätzel, J. Maier, Nat. Mater. 2018, 17, 445.
S. Chen, X. Wen, R. Sheng, S. Huang, X. Deng, M. A. Green, A. Ho-Baillie, ACS Appl. Mater. Interfaces 2016, 8, 5351.
Y. Rakita, I. Lubomirsky, D. Cahen, Mater. Horiz. 2019, 6, 1297.
Y. T. Li, L. Ding, J. Z. Li, J. Kang, D. H. Li, L. Ren, Z. Y. Ju, M. X. Sun, J. Q. Ma, Y. Tian, G. Y. Gou, D. Xie, H. Tian, Y. Yang, L. W. Wang, L. M. Peng, T. L. Ren, ACS Cent. Sci. 2019, 5, 1857.
Y. Chen, W. Zhou, X. Chen, X. Zhang, H. Gao, N. A. N. Ouedraogo, Z. Zheng, C. B. Han, Y. Zhang, H. Yan, Adv. Funct. Mater. 2022, 32, 2108417.
J. T. Dubose, P. V. Kamat, J. Am. Chem. Soc. 2020, 142, 5362.
P. Cui, D. Wei, J. Ji, H. Huang, E. Jia, S. Dou, T. Wang, W. Wang, M. Li, Nat. Energy 2019, 4, 150.
Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Appl. Phys. Lett. 2014, 105, 163508.
T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, Energy Environ. Sci. 2016, 9, 3472.
X. Zhang, X. Chen, Y. Chen, N. A. N. Ouedraogo, J. Li, X. Bao, C. B. Han, Y. Shirai, Y. Zhang, H. Yan, Nanoscale Adv. 2021, 3, 6128.
X. Zhang, W. Zhou, X. Chen, Y. Chen, X. Li, M. Wang, Y. Zhou, H. Yan, Z. Zheng, Y. Zhang, Adv. Energy Mater. 2022, 12, 2201105.
Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng, S. Tang, Y. Liu, J. Zhao, J. Huang, J. Phys. Chem. Lett. 2018, 9, 654.
L. Li, S. Ye, J. Qu, F. Zhou, J. Song, G. Shen, Small 2021, 17, 2005606.
X. Zou, Y. Li, G. Tang, P. You, F. Yan, Small 2019, 15, 1901004.
X. Chen, Y. Shirai, M. Yanagida, K. Miyano, J. Phys. Chem. C 2019, 123, 3968.
Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14, 193.
Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu, Z. Yu, G. Yang, Y. Deng, Q. Jiang, Y. Liu, Y. Yan, J. Huang, Nat. Energy 2022, 7, 65.
Q. Ou, Y. Zhang, Z. Wang, J. A. Yuwono, R. Wang, Z. Dai, W. Li, C. Zheng, Z. Q. Xu, X. Qi, S. Duhm, N. V. Medhekar, H. Zhang, Q. Bao, Adv. Mater. 2018, 30, 1705792.
P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O'Regan, P. R. F. Barnes, Nat. Commun. 2016, 7, 13831.
J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103.
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
G. Lippert, J. Hutter, M. Parrinello, Mol. Phys. 1997, 92, 477.
J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105.
S. Goedecker, M. Teter, Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 1703.
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.