Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions.

Biotransformation Cyclization Hopenes Squalene hopene cyclase Triterpenoids

Journal

Biotechnology letters
ISSN: 1573-6776
Titre abrégé: Biotechnol Lett
Pays: Netherlands
ID NLM: 8008051

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 25 06 2022
accepted: 14 03 2023
revised: 01 03 2023
medline: 5 5 2023
pubmed: 14 4 2023
entrez: 13 4 2023
Statut: ppublish

Résumé

Squalene hopene cyclases (SHC) convert squalene, the linear triterpene to fused ring product hopanoid by the cationic cyclization mechanism. The main function of hopanoids, a class of pentacyclic triterpenoids in bacteria involves the maintenance of membrane fluidity and stability. 2, 3-oxido squalene cyclases are functional analogues of SHC in eukaryotes and both these enzymes have fascinated researchers for the high stereo selectivity, complexity, and efficiency they possess. The peculiar property of the enzyme squalene hopene cyclase to accommodate substrates other than its natural substrate can be exploited for the use of these enzymes in an industrial perspective. Here, we present an extensive overview of the enzyme squalene hopene cyclase with emphasis on the cloning and overexpression strategies. An attempt has been made to explore recent research trends around squalene cyclase mediated cyclization reactions of flavour and pharmaceutical significance by using non-natural molecules as substrates.

Identifiants

pubmed: 37055654
doi: 10.1007/s10529-023-03366-y
pii: 10.1007/s10529-023-03366-y
doi:

Substances chimiques

diploptene 1615-91-4
Squalene 7QWM220FJH
Triterpenes 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

573-588

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Abe I (2007) Enzymatic synthesis of cyclic triterpenes. Nat Prod Rep 24:1311. https://doi.org/10.1039/b616857b
doi: 10.1039/b616857b pubmed: 18033581
Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206. https://doi.org/10.1021/cr00022a009
doi: 10.1021/cr00022a009
Barabote RD, Xie G, Leu DH et al (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043. https://doi.org/10.1101/gr.084848.108
doi: 10.1101/gr.084848.108 pubmed: 19270083 pmcid: 2694482
Benítez-Mateos AI, Schneider A, Hegarty E et al (2022) Spheroplasts preparation boosts the catalytic potential of a squalene-hopene cyclase. Nat Commun 13:1–9. https://doi.org/10.1038/s41467-022-34030-0
doi: 10.1038/s41467-022-34030-0
Bicas JL, Fontanille P, Pastore GM, Larroche C (2008) Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 105:1991–2001. https://doi.org/10.1111/j.1365-2672.2008.03923.x
doi: 10.1111/j.1365-2672.2008.03923.x pubmed: 19120646
Bignell DRD, Huguet-Tapia JC, Chambers AH et al (2010) Streptomyces scabies 87–22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant-Microbe Interact 23:161–175. https://doi.org/10.1094/mpmi-23-2-0161
doi: 10.1094/mpmi-23-2-0161 pubmed: 20064060
Bird CW, Lynch JM, Pirt FJ et al (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230:473–474. https://doi.org/10.1038/230473a0
doi: 10.1038/230473a0 pubmed: 4929985
Bode HB, Zeggel B, Silakowski B et al (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481. https://doi.org/10.1046/j.1365-2958.2003.03309.x
doi: 10.1046/j.1365-2958.2003.03309.x pubmed: 12519197
Bouvier P, Rohmer M, Benveniste P, Ourisson G (1976) Δ8(14)-steroids in the bacterium Methylococcus capsulatus. Biochem J 159:267–271. https://doi.org/10.1042/bj1590267
doi: 10.1042/bj1590267 pubmed: 999649 pmcid: 1164113
Bouwknegt J, Wiersma SJ, Ortiz-Merino RA et al (2021) A squalene-hopene cyclase in Schizosaccharomyces japonicus represents a eukaryotic adaptation to sterol-independent anaerobic growth. bioRxiv. https://doi.org/10.1101/2021.03.17.435848
doi: 10.1101/2021.03.17.435848
Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442. https://doi.org/10.1021/cr050286w
doi: 10.1021/cr050286w pubmed: 16895335
Copeland A, Lapidus A, Glavina Del Rio T et al (2009) Complete genome sequence of Catenulispora acidiphila type strain (ID 139908). Stand Genomic Sci 1:119–125. https://doi.org/10.4056/sigs.17259
doi: 10.4056/sigs.17259 pubmed: 21304647 pmcid: 3035231
Corey EJ, Matsuda SP, Bartel B (1993) Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci USA 90:11628–11632. https://doi.org/10.1073/pnas.90.24.11628
doi: 10.1073/pnas.90.24.11628 pubmed: 7505443 pmcid: 48037
Dougherty DA (1996) Cation-π interactions in chemistry and biology: a new view of benzene, phe, tyr, and trp. Science (80-) 271:163–168
doi: 10.1126/science.271.5246.163
Dzubak P, Hajduch M, Vydra D et al (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23:394–411. https://doi.org/10.1039/B515312N
doi: 10.1039/B515312N pubmed: 16741586
Eichenberger M, Hüppi S, Patsch D et al (2021) Asymmetric cation-olefin monocyclization by engineered squalene-hopene cyclases. Angew Chem Int Ed 60:26080–26086. https://doi.org/10.1002/anie.202108037
doi: 10.1002/anie.202108037
Eichhorn E, Locher E, Guillemer S et al (2018) Biocatalytic process for (−)-ambrox production using squalene hopene cyclase. Adv Synth Catal 360:2339–2351. https://doi.org/10.1002/adsc.201800132
doi: 10.1002/adsc.201800132
Feng L, Wang W, Cheng J et al (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607. https://doi.org/10.1073/pnas.0609650104
doi: 10.1073/pnas.0609650104 pubmed: 17372208 pmcid: 1838512
Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. https://doi.org/10.1016/j.femsec.2003.12.009
doi: 10.1016/j.femsec.2003.12.009 pubmed: 19712436
Ghimire GP, Oh T-J, Lee HC, Sohng JK (2009) Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol Lett 31:565–569. https://doi.org/10.1007/s10529-008-9903-2
doi: 10.1007/s10529-008-9903-2 pubmed: 19116691
Grünler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta (BBA)/lipids Lipid Metab 1212:259–277
doi: 10.1016/0005-2760(94)90200-3
Hammer SC, Syrén PO, Seitz M et al (2013) Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation. Curr Opin Chem Biol 17:293–300. https://doi.org/10.1016/j.cbpa.2013.01.016
doi: 10.1016/j.cbpa.2013.01.016 pubmed: 23485581
Hayashi H, Huang P, Takada S et al (2004) Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. Biol Pharm Bull 27:1086–1092. https://doi.org/10.1248/bpb.27.1086
doi: 10.1248/bpb.27.1086 pubmed: 15256745
Henche S, Nestl BM, Hauer B (2021) Enzymatic friedel-crafts alkylation using squalene-hopene cyclases. ChemCatChem 13:3405–3409. https://doi.org/10.1002/cctc.202100452
doi: 10.1002/cctc.202100452
Hill RA, Connolly JD (2013) Triterpenoids. Nat Prod Rep 30:1028–1065. https://doi.org/10.1039/C3NP70032A
doi: 10.1039/C3NP70032A pubmed: 23736383
Hoshino T, Kumai Y, Kudo I et al (2004) Enzymatic cyclization reactions of geraniol, farnesol and geranylgeraniol, and those of truncated squalene analogs having C20 and C25 by recombinant squalene cyclase. Org Biomol Chem 2:2650–2657. https://doi.org/10.1039/b407001a
doi: 10.1039/b407001a pubmed: 15351829
Hsiao N-H, Kirby R (2008) Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek 93:1–25. https://doi.org/10.1007/s10482-007-9175-1
doi: 10.1007/s10482-007-9175-1 pubmed: 17588127
Huang L, Li J, Ye H et al (2012) Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta 236:1571–1581. https://doi.org/10.1007/s00425-012-1712-0
doi: 10.1007/s00425-012-1712-0 pubmed: 22837051
Husselstein-Muller T, Schaller H, Benveniste P (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45:75–92. https://doi.org/10.1023/A:1006476123930
doi: 10.1023/A:1006476123930 pubmed: 11247608
Inagaki YS, Etherington G, Geisler K et al (2011) Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. New Phytol 191:432–448. https://doi.org/10.1111/j.1469-8137.2011.03712.x
doi: 10.1111/j.1469-8137.2011.03712.x pubmed: 21501172
Ito R, Mori K, Hashimoto I et al (2011) Triterpene cyclases from Oryza sativa L.: cycloartenol, parkeol and achilleol B synthases. Org Lett 13:2678–2681. https://doi.org/10.1021/ol200777d
doi: 10.1021/ol200777d pubmed: 21526825
Joffrion TM, Collins MS, Sesterhenn T, Cushion MT (2010) Functional characterization and localization of Pneumocystis carinii lanosterol synthase. Eukaryot Cell 9:107–115. https://doi.org/10.1128/EC.00264-09
doi: 10.1128/EC.00264-09 pubmed: 19897737
Kajikawa M, Yamato KT, Fukuzawa H et al (2005) Cloning and characterization of a cDNA encoding β-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66:1759–1766. https://doi.org/10.1016/j.phytochem.2005.05.021
doi: 10.1016/j.phytochem.2005.05.021 pubmed: 16005035
Kannenberg EL, Poralla K (1999) Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86:168–176
doi: 10.1007/s001140050592
Kleemann G, Kellner R, Poralla K (1994) Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. Biochim Biophys Acta (BBA)/lipids Lipid Metab 1210:317–320. https://doi.org/10.1016/0005-2760(94)90235-6
doi: 10.1016/0005-2760(94)90235-6
Kolesnikova MD, Xiong Q, Lodeiro S et al (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95. https://doi.org/10.1016/j.abb.2005.12.010
doi: 10.1016/j.abb.2005.12.010 pubmed: 16445886
Laura T, Marco S, Paolo A, Valentina P (2011) Potential role of nonstatin cholesterol lowering agents. IUBMB Life 63:964–971. https://doi.org/10.1002/iub.522
doi: 10.1002/iub.522
Lenhart A, Weihofen WA, Pleschke AEW, Schulz GE (2002) Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48-8071. Chem Biol 9:639–645. https://doi.org/10.1016/S1074-5521(02)00138-2
doi: 10.1016/S1074-5521(02)00138-2 pubmed: 12031670
Liu Z, Zhang Y, Sun J et al (2020) A novel soluble squalene-hopene cyclase and its application in efficient synthesis of hopene. Front Bioeng Biotechnol 8:1–10. https://doi.org/10.3389/fbioe.2020.00426
doi: 10.3389/fbioe.2020.00426
Maione F, Oliaro-Bosso S, Meda C et al (2015) The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep 5:1–12. https://doi.org/10.1038/srep09054
doi: 10.1038/srep09054
Malinowska M, Sikora E, Ogonowski J (2013) Production of triterpenoids with cell and tissue cultures. Acta Biochim Pol 60:731–735
pubmed: 24432325
McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell Online 7:1015–1026. https://doi.org/10.1105/tpc.7.7.1015
doi: 10.1105/tpc.7.7.1015
Meyer MM, Segura MJR, Wilson WK, Matsuda SPT (2000) Oxidosqualene cyclase residues that promote formation of cycloartenol, lanosterol, and parkeol. Angew Chem Int Ed 39:4090–4092. https://doi.org/10.1002/1521-3773(20001117)39:22%3c4090::AID-ANIE4090%3e3.0.CO;2-8
doi: 10.1002/1521-3773(20001117)39:22<4090::AID-ANIE4090>3.0.CO;2-8
Morlacchi P, Wilson WK, Xiong Q et al (2009) Product profile of PEN3: the last unexamined oxidosqualene cyclase in arabidopsis thaliana. Org Lett 11:2627–2630. https://doi.org/10.1021/ol9005745
doi: 10.1021/ol9005745 pubmed: 19445469
Nair IM, Jayachandran K (2020) In vitro enzymatic conversion of glibenclamide using squalene hopene cyclase from Pseudomonas mendocina expressed in E. coli BL21 (DE3). Mol Biotechnol 62:456–465. https://doi.org/10.1007/s12033-020-00264-w
doi: 10.1007/s12033-020-00264-w pubmed: 32757148
Nair IM, Kochupurakal J (2019) In silico characterization and over-expression of squalene hopene cyclase from Pseudomonas mendocina. 3 Biotech 9:1–7. https://doi.org/10.1007/s13205-019-1901-7
doi: 10.1007/s13205-019-1901-7
Nakamura Y, Kaneko T, Sato S et al (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130
doi: 10.1093/dnares/9.4.123 pubmed: 12240834
Nicolaou KC (2014) Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc R Soc A Math Phys Eng Sci 470:20130690–20130690. https://doi.org/10.1098/rspa.2013.0690
doi: 10.1098/rspa.2013.0690
Ochs D, Kaletta C, Entian KD et al (1992) Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. J Bacteriol 174:298–302. https://doi.org/10.1128/jb.174.1.298-302.1992
doi: 10.1128/jb.174.1.298-302.1992 pubmed: 1729216 pmcid: 205708
Oliaro-Bosso S, Schulz-Gasch T, Taramino S et al (2005) Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies. Biochem Soc Trans 33:1202–1205. https://doi.org/10.1042/BST20051202
doi: 10.1042/BST20051202 pubmed: 16246081
Pati A, Sikorski J, Nolan M et al (2009) Complete genome sequence of Saccharomonospora viridis type strain (P101). Stand Genomic Sci 1:141–149. https://doi.org/10.4056/sigs.20263
doi: 10.4056/sigs.20263 pubmed: 21304650 pmcid: 3035233
Pati A, Labutti K, Pukall R et al (2010) Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). Stand Genomic Sci 2:49–56. https://doi.org/10.4056/sigs.601105
doi: 10.4056/sigs.601105 pubmed: 21304677 pmcid: 3035262
Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci 100:15352–15357. https://doi.org/10.1073/pnas.2536559100
doi: 10.1073/pnas.2536559100 pubmed: 14660793 pmcid: 307571
Perzl M, Müller P, Poralla K, Kannenberg EL (1997) Squalene-hopene cyclase from Bradyrhizobium japonicum : cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. Microbiology 143:1235–1242. https://doi.org/10.1099/00221287-143-4-1235
doi: 10.1099/00221287-143-4-1235 pubmed: 9141686
Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314
doi: 10.1016/j.pbi.2006.03.004 pubmed: 16581287
Pichersky E, Gang DR (2018) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445. https://doi.org/10.1016/S1360-1385(00)01741-6
doi: 10.1016/S1360-1385(00)01741-6
Poralla K, Hewelt A, Prestwich GD et al (1994) A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem Sci 19:157–158. https://doi.org/10.1016/0968-0004(94)90276-3
doi: 10.1016/0968-0004(94)90276-3 pubmed: 8016864
Racolta S, Juhl PB, Sirim D, Pleiss J (2012) The triterpene cyclase protein family: a systematic analysis. Proteins Struct Funct Bioinform 80:2009–2019. https://doi.org/10.1002/prot.24089
doi: 10.1002/prot.24089
Reipen G, Poralla K, Sahml H, Sprenger GA (1995) Zymomonas mobilis squalene-hopene cyclase gene ( shc ): cloning, DNA sequence analysis, and expression in Escherichia Coli. Microbiology 141:155–161
doi: 10.1099/00221287-141-1-155 pubmed: 7894707
Rudnitskaya A, Török B, Török M (2010) Molecular docking of enzyme inhibitors. Biochem Mol Biol Educ 38:261–265. https://doi.org/10.1002/bmb.20392
doi: 10.1002/bmb.20392 pubmed: 21567838
Saar J, Kader JC, Poralla K, Ourisson G (1991) Purification and some properties of the squalene-tetrahymanol cyclase from Tetrahymena thermophila. BBA Gen Subj 1075:93–101. https://doi.org/10.1016/0304-4165(91)90080-Z
doi: 10.1016/0304-4165(91)90080-Z
Sahm H, Rohmer M, Bringer-Meyer S et al (1993) Biochemistry and physiology of hopanoids in bacteria. Adv Microb Physiol 35:247–273. https://doi.org/10.1016/S0065-2911(08)60100-9
doi: 10.1016/S0065-2911(08)60100-9 pubmed: 8310881
Sato T, Kanai Y, Hoshino T (1998) Overexpression of squalene-hopene cyclase by the pET Vector in Escherichia Coli and first identification of tryptophan and aspartic acid residues inside the QW Motif as active sites. Biosci Biotechnol Biochem 62:407–411. https://doi.org/10.1271/bbb.62.407
doi: 10.1271/bbb.62.407 pubmed: 9532806
Sawai S, Akashi T, Sakurai N et al (2006) Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant Cell Physiol 47:673–677. https://doi.org/10.1093/pcp/pcj032
doi: 10.1093/pcp/pcj032 pubmed: 16531457
Schrittwieser JH, Velikogne S, Hall M, Kroutil W (2018) Artificial biocatalytic linear cascades for preparation of organic molecules. Chem Rev 118:270–348. https://doi.org/10.1021/acs.chemrev.7b00033
doi: 10.1021/acs.chemrev.7b00033 pubmed: 28481088
Schulz-Gasch T, Stahl M (2003) Mechanistic insights into oxidosqualene cyclizations through homology modeling. J Comput Chem 24:741–753. https://doi.org/10.1002/jcc.10147
doi: 10.1002/jcc.10147 pubmed: 12666166
Seckler B, Poralla K (1986) Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius. BBA Gen Subj 881:356–363. https://doi.org/10.1016/0304-4165(86)90027-9
doi: 10.1016/0304-4165(86)90027-9
Seitz M, Klebensberger J, Siebenhaller S et al (2012) Substrate specificity of a novel squalene-hopene cyclase from Zymomonas mobilis. J Mol Catal B Enzyme 84:72–77. https://doi.org/10.1016/j.molcatb.2012.02.007
doi: 10.1016/j.molcatb.2012.02.007
Shinozaki J, Shibuya M, Masuda K, Ebizuka Y (2008) Squalene cyclase and oxidosqualene cyclase from a fern. FEBS Lett 582:310–318. https://doi.org/10.1016/j.febslet.2007.12.023
doi: 10.1016/j.febslet.2007.12.023 pubmed: 18154734
Siedenburg G, Jendrossek D (2011) Squalene-hopene cyclases. Appl Environ Microbiol 77:3905–3915
doi: 10.1128/AEM.00300-11 pubmed: 21531832 pmcid: 3131620
Smitha M, SinghSingh SR (2017) Microbial biotransformation: a process for chemical alterations. J Bacteriol Mycol Open Access 4:2–7. https://doi.org/10.15406/jbmoa.2017.04.00085
doi: 10.15406/jbmoa.2017.04.00085
Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc Lond B Biol Sci 361:951–968. https://doi.org/10.1098/rstb.2006.1837
doi: 10.1098/rstb.2006.1837 pubmed: 16754609 pmcid: 1578733
Suzuki M, Xiang T, Ohyama K et al (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571. https://doi.org/10.1093/pcp/pcj031
doi: 10.1093/pcp/pcj031 pubmed: 16531458
Takahashi K, Sasaki Y, Hoshino T (2018) Squalene-hopene cyclase: on the polycyclization reactions of squalene analogues bearing ethyl groups at positions C-6, C-10, C-15, and C-19. Eur J Org Chem 2018:1477–1490. https://doi.org/10.1002/ejoc.201800010
doi: 10.1002/ejoc.201800010
Tanaka H, Noma H, Noguchi H, Abe I (2006) Enzymatic formation of pyrrole-containing novel cyclic polyprenoids by bacterial squalene:hopene cyclase. Tetrahedron Lett 47:3085–3089. https://doi.org/10.1016/j.tetlet.2006.02.151
doi: 10.1016/j.tetlet.2006.02.151
Thimmappa R, Geisler K, Louveau T et al (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257. https://doi.org/10.1146/annurev-arplant-050312-120229
doi: 10.1146/annurev-arplant-050312-120229 pubmed: 24498976
Tippelt A, Jahnke L, Poralla K (1998) Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids. Biochim Biophys Acta 1391:223–232. https://doi.org/10.1016/s0005-2760(97)00212-9
doi: 10.1016/s0005-2760(97)00212-9 pubmed: 9555026
Trapani L, Segatto M, Ascenzi P, Pallottini V (2011) Critical review potential role of nonstatin cholesterol lowering agents. IUBMB Life 63:964–971. https://doi.org/10.1002/iub.522
doi: 10.1002/iub.522 pubmed: 21990243
Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159. https://doi.org/10.1016/j.orggeochem.2004.06.013
doi: 10.1016/j.orggeochem.2004.06.013
Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74:1–17. https://doi.org/10.4103/0250-474X.102537
doi: 10.4103/0250-474X.102537 pubmed: 23204616 pmcid: 3507339
Ward N, Larsen Ø, Sakwa J et al (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303–e303. https://doi.org/10.1371/journal.pbio.0020303
doi: 10.1371/journal.pbio.0020303 pubmed: 15383840 pmcid: 517821
Wei JH, Yin X, Welander PV (2016) Sterol synthesis in diverse bacteria. Front Microbiol 7:990. https://doi.org/10.3389/fmicb.2016.00990
doi: 10.3389/fmicb.2016.00990 pubmed: 27446030 pmcid: 4919349
Wendt KU, Poralla K, Schulz GE (1997) Structure and function of a squalene cyclase. Science (80-) 277:1811–1815
doi: 10.1126/science.277.5333.1811
Xue Z, Duan L, Liu D et al (2012) Divergent evolution of oxidosqualene cyclases in plants. New Phytol 193:1022–1038. https://doi.org/10.1111/j.1469-8137.2011.03997.x
doi: 10.1111/j.1469-8137.2011.03997.x pubmed: 22150097
Yang JC, Madupu R, Durkin AS et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (Shipworms). PLoS ONE 4:e6085
doi: 10.1371/journal.pone.0006085 pubmed: 19568419 pmcid: 2699552
Zheng X, Luo X, Ye G et al (2015) Characterisation of two oxidosqualene cyclases responsible for triterpenoid biosynthesis in Ilex asprella. Int J Mol Sci 16:3564–3578. https://doi.org/10.3390/ijms16023564
doi: 10.3390/ijms16023564 pubmed: 25664861 pmcid: 4346913

Auteurs

Indu Muraleedharan Nair (IM)

School of Biosciences, Mahatma Gandhi University, Athirampuzha, Kottayam, 686560, India.
Department of Physiology, School of Medicine, University College Cork, Cork, T12 XF62, Ireland.

Jayachandran Kochupurackal (J)

School of Biosciences, Mahatma Gandhi University, Athirampuzha, Kottayam, 686560, India. jayachandrank@mgu.ac.in.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH