Structure and mechanism of the alkane-oxidizing enzyme AlkB.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 04 2023
Historique:
received: 23 03 2023
accepted: 03 04 2023
medline: 19 4 2023
entrez: 17 4 2023
pubmed: 18 4 2023
Statut: epublish

Résumé

Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.

Identifiants

pubmed: 37069165
doi: 10.1038/s41467-023-37869-z
pii: 10.1038/s41467-023-37869-z
pmc: PMC10110569
doi:

Substances chimiques

Alkanes 0
Carbon 7440-44-0
AlkB Enzymes EC 1.14.11.33

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

2180

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM130989
Pays : United States
Organisme : NIGMS NIH HHS
ID : U24 GM129541
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Chem Biol. 2007 Feb;14(2):165-72
pubmed: 17317570
FEBS Lett. 2003 Jun 19;545(2-3):188-92
pubmed: 12804773
Nat Microbiol. 2021 Apr;6(4):489-498
pubmed: 33526885
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
FEMS Microbiol Ecol. 2002 Aug 1;41(2):141-50
pubmed: 19709248
Nucleic Acids Res. 2022 Jul 5;50(W1):W210-W215
pubmed: 35610055
Biosci Biotechnol Biochem. 2004 Oct;68(10):2171-7
pubmed: 15502364
Biodegradation. 2018 Aug;29(4):359-407
pubmed: 29948519
Res Microbiol. 2002 Jul-Aug;153(6):339-44
pubmed: 12234007
Appl Microbiol Biotechnol. 2006 Sep;72(2):353-60
pubmed: 16520925
Mol Biol (Mosk). 2008 Mar-Apr;42(2):247-57
pubmed: 18610833
Nat Methods. 2019 Nov;16(11):1153-1160
pubmed: 31591578
J Am Chem Soc. 2007 Mar 28;129(12):3514-5
pubmed: 17341076
Curr Opin Biotechnol. 2004 Jun;15(3):205-14
pubmed: 15193328
Angew Chem Int Ed Engl. 2008;47(28):5232-4
pubmed: 18512839
Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2981-6
pubmed: 9096332
Curr Opin Biotechnol. 2022 Feb;73:337-345
pubmed: 34768202
Eur J Biochem. 1988 Jul 1;174(4):671-8
pubmed: 3134198
Front Microbiol. 2013 Dec 12;4:370
pubmed: 24376439
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Nat Protoc. 2014 Mar;9(3):674-93
pubmed: 24577359
Front Microbiol. 2013 May 10;4:109
pubmed: 23825470
Appl Microbiol Biotechnol. 2007 Oct;76(6):1209-21
pubmed: 17673997
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
J Microbiol Methods. 2006 Sep;66(3):486-96
pubmed: 16522338
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13591-6
pubmed: 26438854
J Appl Microbiol. 2000 Aug;89(2):339-48
pubmed: 10971768
J Mol Biol. 2020 Aug 21;432(18):5152-5161
pubmed: 32470559
J Appl Microbiol. 2005;99(6):1392-403
pubmed: 16313412
Biochem Biophys Res Commun. 1996 Jan 5;218(1):17-21
pubmed: 8573125
Appl Environ Microbiol. 2009 Dec;75(23):7391-8
pubmed: 19820158
J Inorg Biochem. 2021 Jun;219:111409
pubmed: 33752122
Environ Microbiol. 2010 May;12(5):1230-42
pubmed: 20148932
Mikrobiologiia. 2011 Sep-Oct;80(5):669-78
pubmed: 22168011
J Inorg Biochem. 2005 Oct;99(10):1998-2006
pubmed: 16084596
Nat Struct Mol Biol. 2018 Mar;25(3):289-296
pubmed: 29434346
J Bacteriol. 2002 Mar;184(6):1733-42
pubmed: 11872725
J Inorg Biochem. 2013 Apr;121:46-52
pubmed: 23337786
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Microb Ecol. 2010 Aug;60(2):429-39
pubmed: 20683589
Commun Biol. 2021 Jul 15;4(1):874
pubmed: 34267316
Environ Microbiol. 1999 Aug;1(4):307-17
pubmed: 11207749
Biotechnol Lett. 2008 Aug;30(8):1447-52
pubmed: 18414802
Appl Environ Microbiol. 2019 Jan 23;85(3):
pubmed: 30446553
Braz J Microbiol. 2013 Oct 30;44(2):633-41
pubmed: 24294263
Protein Sci. 2021 Jan;30(1):70-82
pubmed: 32881101
J Environ Health Sci Eng. 2020 Oct 9;18(2):1415-1435
pubmed: 33312652
Environ Monit Assess. 2017 Mar;189(3):116
pubmed: 28220441
J Biol Inorg Chem. 2003 Sep;8(7):733-40
pubmed: 12811621
Nature. 2015 Aug 13;524(7564):252-6
pubmed: 26098370
Sci Rep. 2014 May 15;4:4968
pubmed: 24829093
FEMS Microbiol Ecol. 2006 Apr;56(1):44-54
pubmed: 16542404
J Biol Chem. 2015 Dec 11;290(50):29820-33
pubmed: 26515067
Antonie Van Leeuwenhoek. 1971;37(3):339-52
pubmed: 5000641
J Bacteriol. 2001 Mar;183(5):1819-23
pubmed: 11160120
J Biol Inorg Chem. 2017 Apr;22(2-3):307-319
pubmed: 27878395
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7432-7437
pubmed: 28652349
Nat Struct Mol Biol. 2015 Jul;22(7):581-5
pubmed: 26098317
Mar Pollut Bull. 2012 Jan;64(1):7-12
pubmed: 22130193
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
FEMS Microbiol Lett. 2011 Mar;316(2):100-7
pubmed: 21204932
J Appl Microbiol. 2008 Jan;104(1):251-9
pubmed: 17922832
Cell. 2021 Jan 21;184(2):370-383.e13
pubmed: 33333023
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Can J Microbiol. 2004 May;50(5):323-33
pubmed: 15213740
J Bacteriol. 2005 Jan;187(1):85-91
pubmed: 15601691
Appl Microbiol Biotechnol. 2007 Jun;75(4):909-19
pubmed: 17347817
J Am Chem Soc. 2012 Dec 19;134(50):20365-75
pubmed: 23157204

Auteurs

Xue Guo (X)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Jianxiu Zhang (J)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Lei Han (L)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Juliet Lee (J)

Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA.
Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA.

Shoshana C Williams (SC)

Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA.
Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.

Allison Forsberg (A)

Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA.
Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA.

Yan Xu (Y)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Rachel Narehood Austin (RN)

Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA. raustin@barnard.edu.

Liang Feng (L)

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA. liangf@stanford.edu.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Charcoal Soil Microbiology Soil Biomass Carbon

Classifications MeSH