Computational modeling and simulation of epithelial wound closure.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 04 2023
Historique:
received: 27 02 2022
accepted: 07 04 2023
medline: 19 4 2023
entrez: 17 4 2023
pubmed: 18 4 2023
Statut: epublish

Résumé

Wounds in the epithelium may lead to serious injurious events or chronic inflammatory diseases, however, multicellular organisms have the ability to self-repair wounds through the movement of epithelial cell toward the wound area. Despite intensive studies exploring the mechanism of wound closure, the role of mechanics in epithelial wound closure is still not well explained. In order to investigate the role of mechanical properties on wound closure process, a three-dimensional continuum physics-based computational model is presented in this study. The model takes into account the material property of the epithelial cell, intercellular interactions between neighboring cells at cell-cell junctions, and cell-substrate adhesion between epithelial cells and ECM. Through finite element simulation, it is found that the closure efficiency is related to the initial gap size and the intensity of lamellipodial protrusion. It is also shown that cells at the wound edge undergo higher stress compared with other cells in the epithelial monolayer, and the cellular normal stress dominates over the cellular shear stress. The model presented in this study can be employed as a numerical tool to unravel the mechanical principles behind the complex wound closure process. These results might have the potential to improve effective wound management and optimize the treatment.

Identifiants

pubmed: 37069231
doi: 10.1038/s41598-023-33111-4
pii: 10.1038/s41598-023-33111-4
pmc: PMC10110613
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6265

Subventions

Organisme : NIGMS NIH HHS
ID : SC2 GM112575
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Biophys J. 2014 Jan 7;106(1):65-73
pubmed: 24411238
J Math Biol. 2014 Mar;68(4):989-1022
pubmed: 23463540
IMA J Math Appl Med Biol. 1992;9(3):177-96
pubmed: 1295928
Dev Cell. 2002 Jul;3(1):9-19
pubmed: 12110163
Nat Phys. 2014 Sep;10(9):683-690
pubmed: 27340423
Curr Biol. 2000 Nov 16;10(22):1420-6
pubmed: 11102803
Anal Chem. 2020 Dec 15;92(24):16180-16187
pubmed: 33253543
Mol Biol Cell. 2005 Dec;16(12):5686-98
pubmed: 16195341
Eng Fract Mech. 2017 Jan;169:276-291
pubmed: 28584343
Nat Commun. 2015 Jul 09;6:7683
pubmed: 26158873
Cell. 2000 Jan 21;100(2):209-19
pubmed: 10660044
Phys Med Biol. 2005 Jan 7;50(1):81-92
pubmed: 15715424
Pediatr Res. 2013 Apr;73(4 Pt 2):553-63
pubmed: 23314298
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):15988-93
pubmed: 17905871
Stem Cells. 2006 Feb;24(2):368-75
pubmed: 16123387
Reprod Domest Anim. 2015 Feb;50(1):104-11
pubmed: 25405800
Biochim Biophys Acta. 2016 Sep;1860(9):1953-60
pubmed: 27288584
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):9944-9
pubmed: 20463286
PLoS Comput Biol. 2016 Apr 07;12(4):e1004863
pubmed: 27054883
Biomech Model Mechanobiol. 2010 Oct;9(5):573-81
pubmed: 20204447
J R Soc Interface. 2010 Jun 6;7 Suppl 3:S341-50
pubmed: 20356878
J Theor Biol. 1980 Jun 7;84(3):575-88
pubmed: 7431941
Plast Reconstr Surg. 1983 Jul;72(1):66-73
pubmed: 6867179
Sci Rep. 2015 Mar 17;5:9172
pubmed: 25779619
Curr Biol. 2000 Jul 13;10(14):831-8
pubmed: 10899000
Ann Plast Surg. 2015 Jan;74(1):114-20
pubmed: 25188249
Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57
pubmed: 19546857
Biomech Model Mechanobiol. 2018 Jun;17(3):915-922
pubmed: 29354863
Physiology (Bethesda). 2013 Nov;28(6):370-9
pubmed: 24186932
PLoS Comput Biol. 2011 Mar;7(3):e1002007
pubmed: 21423710
Nat Phys. 2019;15:696-705
pubmed: 31897085
Nat Cell Biol. 2014 Mar;16(3):217-23
pubmed: 24561621
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2452-9
pubmed: 23345440
Biochim Biophys Acta. 2009 Apr;1788(4):820-31
pubmed: 18706883
ACS Nano. 2019 Feb 26;13(2):1204-1212
pubmed: 30758172
Curr Biol. 2007 Dec 18;17(24):2095-104
pubmed: 18082406
J Phys Condens Matter. 2010 May 19;22(19):194119
pubmed: 21386442
Nat Commun. 2015 Jan 22;6:6111
pubmed: 25608921
Phys Rev Lett. 1992 Sep 28;69(13):2013-2016
pubmed: 10046374
J Surg Res. 1993 Aug;55(2):233-47
pubmed: 8412105
Proc Math Phys Eng Sci. 2017 Jul;473(2203):20170257
pubmed: 28804267
Am J Physiol Lung Cell Mol Physiol. 2012 Feb 1;302(3):L287-99
pubmed: 22037358
Biophys J. 2014 Aug 5;107(3):564-575
pubmed: 25099796
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2660-5
pubmed: 26903658
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20691-6
pubmed: 21068372
Mol Biol Cell. 2018 Sep 15;29(19):2292-2302
pubmed: 30044714
Curr Opin Cell Biol. 2016 Oct;42:52-62
pubmed: 27131272
Biomech Model Mechanobiol. 2020 Dec;19(6):1997-2013
pubmed: 32193709
Integr Biol (Camb). 2015 Oct;7(10):1218-27
pubmed: 26099063
Biochem Biophys Res Commun. 2020 Feb 5;522(2):279-285
pubmed: 31879014
Wiley Interdiscip Rev Syst Biol Med. 2009 Sep-Oct;1(2):191-201
pubmed: 20835991
BMC Pharmacol Toxicol. 2019 Jan 09;20(1):4
pubmed: 30626448
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10891-6
pubmed: 22711834
Development. 2014 May;141(9):1814-20
pubmed: 24718989
Front Cell Dev Biol. 2019 Nov 08;7:251
pubmed: 31781558
Nat Phys. 2019 Jul 4;15(11):1195-1203
pubmed: 31700525
J Cell Biol. 1993 May;121(3):565-78
pubmed: 8486737
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2916-9
pubmed: 25570601
J Mech Behav Biomed Mater. 2013 Dec;28:397-409
pubmed: 23746929
Phys Rev Lett. 2015 Jun 5;114(22):228101
pubmed: 26196647
J Mech Behav Biomed Mater. 2017 Jan;65:224-235
pubmed: 27592291
J Cell Sci. 2006 Aug 15;119(Pt 16):3385-98
pubmed: 16882694
Nat Mater. 2011 Jun;10(6):469-75
pubmed: 21602808
Biomech Model Mechanobiol. 2018 Apr;17(2):439-448
pubmed: 29094276
Nano Lett. 2010 May 12;10(5):1823-30
pubmed: 20387859
Phys Rev Lett. 2009 Jul 31;103(5):058102
pubmed: 19792537
Pflugers Arch. 1993 Oct;425(1-2):164-71
pubmed: 8272373

Auteurs

Jie Bai (J)

Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.

Xiaowei Zeng (X)

Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA. xiaowei.zeng@utsa.edu.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation

Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis.

Bruna Araujo David, Jawairia Atif, Fernanda Vargas E Silva Castanheira et al.
1.00
Animals Kupffer Cells Mice Liver Cell Movement

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells

Classifications MeSH