The Genetic Architecture of Adaptation to Leaf and Root Bacterial Microbiota in Arabidopsis thaliana.

community ecology genome-environment association local adaptation pathogens plant-microbiota interactions

Journal

Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455

Informations de publication

Date de publication:
02 05 2023
Historique:
medline: 12 5 2023
pubmed: 18 4 2023
entrez: 18 04 2023
Statut: ppublish

Résumé

Understanding the role of the host genome in modulating microbiota variation is a need to shed light on the holobiont theory and overcome the current limits on the description of host-microbiota interactions at the genomic and molecular levels. However, the host genetic architecture structuring microbiota is only partly described in plants. In addition, most association genetic studies on microbiota are often carried out outside the native habitats where the host evolves and the identification of signatures of local adaptation on the candidate genes has been overlooked. To fill these gaps and dissect the genetic architecture driving adaptive plant-microbiota interactions, we adopted a genome-environment association (GEA) analysis on 141 whole-genome sequenced natural populations of Arabidopsis thaliana characterized in situ for their leaf and root bacterial communities in fall and spring, and a large range of nonmicrobial ecological factors (i.e., climate, soil, and plant communities). A much higher fraction of among-population microbiota variance was explained by the host genetics than by nonmicrobial ecological factors. Importantly, the relative importance of host genetics and nonmicrobial ecological factors in explaining the presence of particular operational taxonomic units (OTUs) differs between bacterial families and genera. In addition, the polygenic architecture of adaptation to bacterial communities was highly flexible between plant compartments and seasons. Relatedly, signatures of local adaptation were stronger on quantitative trait loci (QTLs) of the root microbiota in spring. Finally, plant immunity appears as a major source of adaptive genetic variation structuring bacterial assemblages in A. thaliana.

Identifiants

pubmed: 37071808
pii: 7128101
doi: 10.1093/molbev/msad093
pmc: PMC10172849
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

Références

Mol Plant. 2021 Mar 1;14(3):503-516
pubmed: 33309942
Mol Plant Pathol. 2020 Nov;21(11):1405-1420
pubmed: 32914940
ISME J. 2019 Sep;13(9):2143-2149
pubmed: 31114015
Mol Plant Pathol. 2022 Mar;23(3):321-338
pubmed: 34939305
ISME J. 2018 Aug;12(8):2024-2038
pubmed: 29849170
Annu Rev Plant Biol. 2013;64:807-38
pubmed: 23373698
Nature. 2015 Apr 23;520(7548):542-4
pubmed: 25903634
Science. 2015 Aug 21;349(6250):860-4
pubmed: 26184915
Am Nat. 2017 May;189(5):463-473
pubmed: 28410032
Rice (N Y). 2020 Oct 9;13(1):72
pubmed: 33034758
Front Genet. 2019 Nov 22;10:954
pubmed: 31824551
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):585-92
pubmed: 24379374
Plant Cell Environ. 2021 Dec;44(12):3515-3525
pubmed: 34562029
Annu Rev Anim Biosci. 2022 Feb 15;10:203-226
pubmed: 35167316
Front Plant Sci. 2018 Jul 10;9:967
pubmed: 30042773
Nat Plants. 2021 Jun;7(6):814-825
pubmed: 34031541
Microbiome. 2018 Apr 25;6(1):78
pubmed: 29695294
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5440-E5449
pubmed: 29848634
Commun Biol. 2021 Aug 5;4(1):936
pubmed: 34354230
Curr Opin Microbiol. 2018 Aug;44:9-19
pubmed: 29909175
Front Plant Sci. 2017 May 23;8:763
pubmed: 28588588
Annu Rev Microbiol. 2020 Sep 8;74:81-100
pubmed: 32530732
Appl Environ Microbiol. 2015 Feb;81(4):1257-66
pubmed: 25501471
Curr Opin Microbiol. 2019 Jun;49:34-40
pubmed: 31698159
New Phytol. 2021 Jan;229(2):712-734
pubmed: 32981118
Microbiome. 2018 Feb 12;6(1):31
pubmed: 29433554
Mol Ecol. 2019 Jul;28(13):3197-3207
pubmed: 31141224
Mol Ecol. 2013 Mar;22(5):1383-99
pubmed: 23294205
Microorganisms. 2021 Jul 19;9(7):
pubmed: 34361969
Nat Plants. 2018 May;4(5):247-257
pubmed: 29725101
NPJ Biofilms Microbiomes. 2021 Sep 7;7(1):72
pubmed: 34493731
Nat Ecol Evol. 2020 Jan;4(1):122-131
pubmed: 31900452
Nature. 2017 Mar 23;543(7646):513-518
pubmed: 28297714
Heredity (Edinb). 2019 Oct;123(4):517-531
pubmed: 31138867
Front Microbiol. 2021 Jan 12;11:574053
pubmed: 33584558
Nat Rev Genet. 2010 Dec;11(12):867-79
pubmed: 21085205
Annu Rev Phytopathol. 2014;52:347-75
pubmed: 24906124
Curr Opin Biotechnol. 2021 Aug;70:167-173
pubmed: 34126329
ISME J. 2022 May;16(5):1376-1387
pubmed: 35022514
Mol Biol Evol. 2023 Mar 4;40(3):
pubmed: 36795638
ISME J. 2018 Feb;12(2):400-410
pubmed: 29053146
Front Plant Sci. 2017 Aug 22;8:1387
pubmed: 28878784
Science. 2011 Oct 7;334(6052):83-6
pubmed: 21980108
Mol Plant Microbe Interact. 2015 Mar;28(3):274-85
pubmed: 25679538
Nat Ecol Evol. 2017 Oct;1(10):1551-1561
pubmed: 29185515
Nat Commun. 2022 Jun 16;13(1):3228
pubmed: 35710629
Cell Host Microbe. 2017 Sep 13;22(3):269-278.e3
pubmed: 28910633
Genome Biol. 2015 Sep 15;16:191
pubmed: 26374288
PLoS One. 2018 Mar 8;13(3):e0194080
pubmed: 29518143
mBio. 2021 Jan 19;12(1):
pubmed: 33468687
Curr Opin Microbiol. 2019 Jun;49:59-65
pubmed: 31731227
Nat Commun. 2014 Nov 10;5:5320
pubmed: 25382143
Front Plant Sci. 2017 Jun 26;8:1094
pubmed: 28694814
Front Plant Sci. 2017 Sep 19;8:1617
pubmed: 28974956
Nature. 2014 Aug 28;512(7515):436-440
pubmed: 25043057
Sci Adv. 2015 Jul 03;1(6):e1400218
pubmed: 26601206
Trends Plant Sci. 2023 Apr;28(4):471-485
pubmed: 36522258
Front Microbiol. 2022 Sep 23;13:984832
pubmed: 36212843
Nat Plants. 2021 Aug;7(8):1078-1092
pubmed: 34226690
Science. 2021 Jan 8;371(6525):
pubmed: 33214288
Mamm Genome. 2021 Aug;32(4):263-281
pubmed: 34159422
Mol Plant Pathol. 2016 May;17(4):510-20
pubmed: 26212639
PLoS Biol. 2022 Aug 11;20(8):e3001681
pubmed: 35951523
Soil Biol Biochem. 2019 Dec;139:107613
pubmed: 31885404
Trends Plant Sci. 2012 Aug;17(8):478-86
pubmed: 22564542
Mol Biol Evol. 2021 Oct 27;38(11):4822-4831
pubmed: 34240182
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-8
pubmed: 20937875
ISME J. 2021 Nov;15(11):3181-3194
pubmed: 33980999
New Phytol. 2016 Apr;210(2):589-601
pubmed: 26777878
Annu Rev Phytopathol. 2015;53:335-56
pubmed: 26047565
PLoS One. 2020 Jun 17;15(6):e0232633
pubmed: 32555651
Nat Ecol Evol. 2020 Feb;4(2):221-229
pubmed: 31988447
Nat Rev Microbiol. 2012 May 14;10(7):497-506
pubmed: 22580365
Nat Biotechnol. 2019 Jun;37(6):676-684
pubmed: 31036930
Curr Opin Genet Dev. 2016 Aug;39:1-7
pubmed: 27270046
PLoS Biol. 2017 Mar 28;15(3):e2001793
pubmed: 28350798
ISME J. 2020 Mar;14(3):847-856
pubmed: 31896788
New Phytol. 2022 Jan;233(1):496-504
pubmed: 34651304
Mol Biol Evol. 2019 Jul 1;36(7):1442-1456
pubmed: 30968130
Elife. 2021 Jun 07;10:
pubmed: 34096867
New Phytol. 2021 Oct;232(2):502-509
pubmed: 34287929
Bioinformatics. 2017 Sep 15;33(18):2938-2940
pubmed: 28645171
Sci Rep. 2019 Jan 10;9(1):24
pubmed: 30631088
Annu Rev Genet. 2016 Nov 23;50:211-234
pubmed: 27648643
Nat Rev Microbiol. 2020 Nov;18(11):607-621
pubmed: 32788714
Science. 2019 May 10;364(6440):
pubmed: 31073042
Evolution. 2005 Apr;59(4):771-85
pubmed: 15926688
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2201285119
pubmed: 35867817
ISME J. 2021 Feb;15(2):397-408
pubmed: 32973341
Genetics. 2015 Dec;201(4):1555-79
pubmed: 26482796
J Integr Plant Biol. 2022 Feb;64(2):230-243
pubmed: 35029016
Front Plant Sci. 2021 Nov 25;12:741122
pubmed: 34899774
Nature. 2020 Apr;580(7805):653-657
pubmed: 32350464
New Phytol. 2016 Feb;209(3):1196-207
pubmed: 26443332
Curr Top Dev Biol. 2016;119:111-56
pubmed: 27282025
New Phytol. 2022 Jun;234(6):1977-1986
pubmed: 34921429
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373
pubmed: 29941552
Mol Ecol. 2017 Jul;26(14):3700-3714
pubmed: 28394503
Mol Ecol. 2013 Aug;22(16):4222-4240
pubmed: 23875782
Nat Commun. 2022 Jun 16;13(1):3443
pubmed: 35710760
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4032-7
pubmed: 25775585
Cell Host Microbe. 2018 Jul 11;24(1):168-179.e4
pubmed: 30001519
Sci Total Environ. 2019 Feb 1;649:1250-1259
pubmed: 30308895

Auteurs

Fabrice Roux (F)

Fabrice Roux, Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France.

Léa Frachon (L)

Fabrice Roux, Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France.
Department of Systematic and Evolutionary Botany, University of Zurich, Zürich, Switzerland.

Claudia Bartoli (C)

Fabrice Roux, Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France.
Institute for Genetics, Environment and Plant Protection (IGEPP), INRAE, Institut Agro AgroCampus Ouest, Université de Rennes 1, Le Rheu, France.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages

Classifications MeSH