A gene regulatory network inference model based on pseudo-siamese network.
Deep learning
Gene regulatory network
Maize
Pseudo-siamese network
Time-series expression
Journal
BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194
Informations de publication
Date de publication:
21 Apr 2023
21 Apr 2023
Historique:
received:
08
10
2022
accepted:
24
03
2023
medline:
25
4
2023
pubmed:
22
4
2023
entrez:
21
04
2023
Statut:
epublish
Résumé
Gene regulatory networks (GRNs) arise from the intricate interactions between transcription factors (TFs) and their target genes during the growth and development of organisms. The inference of GRNs can unveil the underlying gene interactions in living systems and facilitate the investigation of the relationship between gene expression patterns and phenotypic traits. Although several machine-learning models have been proposed for inferring GRNs from single-cell RNA sequencing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, suffer from sensitivity to noise and may encounter difficulties in handling the high noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene regulation relationships. Thus, inferring large-scale information from GRNs remains a formidable challenge. This study proposes a multilevel, multi-structure framework called a pseudo-Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to capture the time features of each TF and target matrix and learn the spatial features of the matrices after merging by applying the DenseNet framework. Finally, we applied a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, including gene expression levels and GRNs, using existing open-source maize multi-omics data and compared them to other GRN inference methods, including GENIE3, GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results show that PSGRN outperforms state-of-the-art methods. This study proposed a new framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidating the temporal and spatial features of TFs and their target genes. The results show the model's robustness and generalization, laying a theoretical foundation for maize genotype-phenotype associations with implications for breeding work.
Identifiants
pubmed: 37085776
doi: 10.1186/s12859-023-05253-9
pii: 10.1186/s12859-023-05253-9
pmc: PMC10122305
doi:
Substances chimiques
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
163Subventions
Organisme : National Natural Science Foundation of China
ID : No. 62031003
Organisme : High Level Innovation Team Construction Project of Beijing Municipal Universities
ID : No. IDHT20190506
Informations de copyright
© 2023. The Author(s).
Références
BMC Syst Biol. 2012 Nov 22;6:145
pubmed: 23173819
Bioinformatics. 2017 Aug 01;33(15):2314-2321
pubmed: 28379368
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91
pubmed: 20308593
Nat Rev Genet. 2009 Oct;10(10):669-80
pubmed: 19736561
Plant Mol Biol. 2009 Jan;69(1-2):179-94
pubmed: 18937034
BMC Genomics. 2011 Dec 23;12 Suppl 5:S13
pubmed: 22369588
Nat Plants. 2019 Dec;5(12):1237-1249
pubmed: 31740773
Trends Genet. 2017 Jul;33(7):436-447
pubmed: 28528721
Nat Rev Genet. 2009 Jan;10(1):57-63
pubmed: 19015660
BMC Genomics. 2020 Dec 29;21(Suppl 11):849
pubmed: 33372598
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):604-624
pubmed: 32324570
PLoS One. 2014 Apr 11;9(4):e92600
pubmed: 24728051
Plant Cell Rep. 2021 Sep;40(9):1617-1630
pubmed: 34159416
Cells. 2022 Feb 01;11(3):
pubmed: 35159319
Cell Syst. 2017 Sep 27;5(3):251-267.e3
pubmed: 28957658
Theor Appl Genet. 2020 May;133(5):1443-1453
pubmed: 31897513
Cytokine Growth Factor Rev. 2001 Jun-Sep;12(2-3):133-42
pubmed: 11325597
Curr Top Dev Biol. 2016;117:237-51
pubmed: 26969981
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
pubmed: 16723010
J Comput Biol. 2000;7(3-4):601-20
pubmed: 11108481
Curr Opin Plant Biol. 2007 Feb;10(1):83-91
pubmed: 17142086
Bioinformatics. 2020 Dec 8;36(19):4885-4893
pubmed: 31950997
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23270-23279
pubmed: 32661177
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):27151-27158
pubmed: 31822622
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19436-41
pubmed: 22084118
Bioinformatics. 2021 Jan 29;36(21):5187-5193
pubmed: 32697830
Mol Plant. 2019 Mar 4;12(3):321-342
pubmed: 30690174
Methods Mol Biol. 2019;1883:1-23
pubmed: 30547394
Bioinformatics. 2017 Dec 15;33(24):3964-3972
pubmed: 28961895
Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646
pubmed: 36370105
Methods Mol Biol. 2021;2190:73-94
pubmed: 32804361
PLoS One. 2010 Sep 28;5(9):
pubmed: 20927193
Nucleic Acids Res. 2013 Apr;41(8):e97
pubmed: 23470995
Nat Commun. 2020 Oct 9;11(1):5089
pubmed: 33037196
Bioinformatics. 2016 Jul 15;32(14):2233-5
pubmed: 27153652
Nucleic Acids Res. 2003 Feb 15;31(4):1234-44
pubmed: 12582243
Brief Bioinform. 2022 Mar 10;23(2):
pubmed: 35062026
Nature. 2016 Jan 7;529(7584):84-7
pubmed: 26738594
PLoS One. 2014 Oct 30;9(10):e111407
pubmed: 25356773
J Mol Biol. 1992 Sep 5;227(1):97-107
pubmed: 1522605
Nucleic Acids Res. 2011 Jan;39(Database issue):D1118-22
pubmed: 21059685
New Phytol. 2021 Jun;230(6):2355-2370
pubmed: 33666235
Plant Cell. 2019 May;31(5):974-992
pubmed: 30914497
Gene Regul Syst Bio. 2008 May 15;2:193-201
pubmed: 19787083
Genome Res. 2014 Jan;24(1):167-76
pubmed: 24131563
EURASIP J Bioinform Syst Biol. 2014 Jul 16;2014:12
pubmed: 28194162
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115
pubmed: 30547796
Mol Plant. 2017 Mar 6;10(3):442-455
pubmed: 27793787
Front Cell Dev Biol. 2014 Aug 19;2:38
pubmed: 25364745
Bioinformatics. 2019 Jun 1;35(12):2159-2161
pubmed: 30445495