Improvements, factors, and influences on DNA recovery from firearms.


Journal

Forensic science international. Genetics
ISSN: 1878-0326
Titre abrégé: Forensic Sci Int Genet
Pays: Netherlands
ID NLM: 101317016

Informations de publication

Date de publication:
07 2023
Historique:
received: 26 10 2022
revised: 31 01 2023
accepted: 13 04 2023
medline: 16 6 2023
pubmed: 25 4 2023
entrez: 24 04 2023
Statut: ppublish

Résumé

Touch DNA recovery from firearms can be central to many criminal investigations, yet the generation of DNA profiles from these items remains poor. Currently in Australia, published casework data highlights extremely poor DNA success from samples recovered from firearms. Only between 5% and 25% of samples result in useful DNA data and therefore increasing the success of DNA recovered from firearms is highly important but has not yet been explored in-depth. This study focused on increasing the recovery of DNA from ten firearm components that were held for 15 s. Multiple recovery methods were used, and the resulting genetic data compared. DNA evidence may be deliberately removed from firearms after discharge to hamper forensic investigations, therefore this study examined the effect of wiping down the components or handling them with gloves. A standard double swab and rinse swab recovery method resulted in an average of 73% cellular recovery. A cumulative swab process had the highest average recovery at 86%, although it was found that increasing the DNA yield led to an increase in mixture complexity. Wiping over the components was observed to remove on average 69% of cellular material, compared with 33% when handed with gloves. However, the size and texture of the components affected the efficiency of cellular material removal. The results from this study allow for prioritisation of areas to sample on firearms, as well as suggesting techniques that can be applied for the optimum process of cellular recovery and subsequent generation of STR DNA data.

Identifiants

pubmed: 37094516
pii: S1872-4973(23)00048-0
doi: 10.1016/j.fsigen.2023.102873
pii:
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

102873

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Todd Kaesler (T)

College of Science & Engineering, Flinders University, Adelaide 5042, South Australia, Australia. Electronic address: todd.kaesler@flinders.edu.au.

K Paul Kirkbride (KP)

College of Science & Engineering, Flinders University, Adelaide 5042, South Australia, Australia.

Adrian Linacre (A)

College of Science & Engineering, Flinders University, Adelaide 5042, South Australia, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH