De novo design of protein interactions with learned surface fingerprints.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
16
06
2022
accepted:
21
03
2023
medline:
5
5
2023
pubmed:
27
4
2023
entrez:
26
4
2023
Statut:
ppublish
Résumé
Physical interactions between proteins are essential for most biological processes governing life
Identifiants
pubmed: 37100904
doi: 10.1038/s41586-023-05993-x
pii: 10.1038/s41586-023-05993-x
pmc: PMC10131520
doi:
Substances chimiques
Proteins
0
spike protein, SARS-CoV-2
0
CTLA4 protein, human
0
CD274 protein, human
0
PDCD1 protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
176-184Informations de copyright
© 2023. The Author(s).
Références
Janin, J., Bahadur, R. P. & Chakrabarti, P. Protein–protein interaction and quaternary structure. Q. Rev. Biophys. 41, 133–180 (2008).
pubmed: 18812015
doi: 10.1017/S0033583508004708
Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426–431 (2020).
pubmed: 32907861
pmcid: 7857403
doi: 10.1126/science.abd9909
Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, eaay5051 (2020).
pubmed: 32409444
pmcid: 7391827
doi: 10.1126/science.aay5051
Silva, D.-A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).
pubmed: 30626941
pmcid: 6521699
doi: 10.1038/s41586-018-0830-7
Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431 (2019).
pubmed: 30849373
pmcid: 6424820
doi: 10.1016/j.cell.2019.01.046
Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332, 816–821 (2011).
pubmed: 21566186
pmcid: 3164876
doi: 10.1126/science.1202617
Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).
pubmed: 32015549
doi: 10.1038/s41587-019-0403-9
Cao, L. et al. Design of protein binding proteins from target structure alone. Nature 605, 551–560 (2022).
Marchand, A., Van Hall-Beauvais, A. K. & Correia, B. E. Computational design of novel protein–protein interactions—an overview on methodological approaches and applications. Curr. Opin. Struct. Biol. 74, 102370 (2022).
pubmed: 35405427
doi: 10.1016/j.sbi.2022.102370
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).
pubmed: 31819266
doi: 10.1038/s41592-019-0666-6
DeGrado, W. F., Wasserman, Z. R. & Lear, J. D. Protein design, a minimalist approach. Science 243, 622–628 (1989).
pubmed: 2464850
doi: 10.1126/science.2464850
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Foight, G. W. et al. Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat. Biotechnol. 37, 1209–1216 (2019).
pubmed: 31501561
pmcid: 6776690
doi: 10.1038/s41587-019-0242-8
Dang, L. T. et al. Receptor subtype discrimination using extensive shape complementary designed interfaces. Nat. Struct. Mol. Biol. 26, 407–414 (2019).
pubmed: 31086346
pmcid: 6582999
doi: 10.1038/s41594-019-0224-z
Chothia, C. & Janin, J. Principles of protein–protein recognition. Nature 256, 705–708 (1975).
pubmed: 1153006
doi: 10.1038/256705a0
Conte, L. L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).
Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).
pubmed: 7529940
doi: 10.1126/science.7529940
Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins Struct. Funct. Genet. 47, 334–343 (2002).
pubmed: 11948787
doi: 10.1002/prot.10085
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. & Shah, R. Signature verification using a ‘Siamese’ time delay neural network. In Proc. 6th International Conference on Neural Information Processing Systems (eds Cowan, J. D., Tesauro, G. & Alspector, J.) 737–744 (Morgan Kaufmann, 1994).
Silva, D.-A., Correia, B. E. & Procko, E. Motif-Driven Design of Protein–Protein Interfaces. In Methods in Molecular Biology Proteins vol. 1414 (ed. Stoddard, L.) 285–304 (Humana New York, 2016).
Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).
pubmed: 20826338
doi: 10.1016/j.str.2010.06.010
Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. Publ. Protein Soc. 22, 74–82 (2013).
doi: 10.1002/pro.2187
Pierce, B. G., Hourai, Y. & Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6, e24657 (2011).
pubmed: 21949741
pmcid: 3176283
doi: 10.1371/journal.pone.0024657
Pierce, B. & Weng, Z. A combination of rescoring and refinement significantly improves protein docking performance. Proteins Struct. Funct. Bioinform. 72, 270–279 (2008).
doi: 10.1002/prot.21920
Lensink, M. F., Velankar, S. & Wodak, S. J. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins Struct. Funct. Bioinform. 85, 359–377 (2017).
doi: 10.1002/prot.25215
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J. & Mumey, B. Antigen–antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. Biochim. Biophys. Acta 1824, 520–532 (2012).
pubmed: 22246133
pmcid: 3443979
doi: 10.1016/j.bbapap.2011.12.007
Fenwick, C. et al. A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Rep. 37, 109814 (2021).
pubmed: 34599871
pmcid: 8452523
doi: 10.1016/j.celrep.2021.109814
Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).
pubmed: 20636820
pmcid: 2919275
doi: 10.1111/j.1600-065X.2010.00923.x
Zak, K. M. et al. Structural biology of the immune checkpoint receptor PD-1 and Its ligands PD-L1/PD-L2. Structure 25, 1163–1174 (2017).
pubmed: 28768162
doi: 10.1016/j.str.2017.06.011
Coventry, B. & Baker, D. Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds. PLoS Comput. Biol. 17, e1008061 (2021).
pubmed: 33684097
pmcid: 7971855
doi: 10.1371/journal.pcbi.1008061
Rocklin Gabriel, J. et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357, 168–175 (2017).
pubmed: 28706065
pmcid: 5568797
doi: 10.1126/science.aan0693
Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).
pubmed: 27626386
pmcid: 5161715
doi: 10.1038/nature19791
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).
pubmed: 22658127
pmcid: 3544539
doi: 10.1056/NEJMoa1200690
Maute, R. L. et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl Acad. Sci. USA 112, E6506–E6514 (2015).
pubmed: 26604307
pmcid: 4664306
doi: 10.1073/pnas.1519623112
Nooren, I. M. A. & Thornton, J. M. Diversity of protein-protein interactions. EMBO J. 22, 3486–3492 (2003).
pubmed: 12853464
pmcid: 165629
doi: 10.1093/emboj/cdg359
Fleishman, S. J. & Baker, D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 149, 262–273 (2012).
pubmed: 22500796
doi: 10.1016/j.cell.2012.03.016
Smith, M. C. & Gestwicki, J. E. Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev. Mol. Med. 14, e16 (2012).
pubmed: 22831787
pmcid: 3591511
doi: 10.1017/erm.2012.10
Procko, E. et al. Computational design of a protein-based enzyme inhibitor. J. Mol. Biol. 425, 3563–3575 (2013).
pubmed: 23827138
doi: 10.1016/j.jmb.2013.06.035
Jha, R. K. et al. Computational design of a PAK1 binding protein. J. Mol. Biol. 400, 257–270 (2010).
pubmed: 20460129
pmcid: 2903434
doi: 10.1016/j.jmb.2010.05.006
Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).
pubmed: 34853475
pmcid: 9293396
doi: 10.1038/s41586-021-04184-w
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).
pubmed: 35862514
pmcid: 9621694
doi: 10.1126/science.abn2100
Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).
pubmed: 25301850
doi: 10.1093/bioinformatics/btu626
Sanner, M. F., Olson, A. J. & Spehner, J.-C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).
pubmed: 8906967
doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
Zhou, Q. PyMesh—Geometry Processing Library for Python (2019).
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
doi: 10.1007/BF01386390
Ingwer B. & Patrick J. F. Groenen. Modern Multidimensional Scaling Theory and Applications (Springer, 2005).
Pedregosa, F. et al. Scikit-Learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. Image Vis. Comput. 10, 557–564 (1992).
doi: 10.1016/0262-8856(92)90076-F
Yin, S., Proctor, E. A., Lugovskoy, A. A. & Dokholyan, N. V. Fast screening of protein surfaces using geometric invariant fingerprints. Proc. Natl Acad. Sci. USA 106, 16622–16626 (2009).
pubmed: 19805347
pmcid: 2757799
doi: 10.1073/pnas.0906146106
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
pubmed: 7108955
doi: 10.1016/0022-2836(82)90515-0
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357
doi: 10.1002/pro.3280
Morozov, A. V. & Kortemme, T. in Advances in Protein Chemistry Vol. 72, 1–38 (Academic, 2005).
Monti, F. et al. Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Chelapa, R., Hoogs, A. & Zhang Z) 5425–5434 (IEEE, 2017).
Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O. & Gursoy, A. PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Res. 42, W285–W289 (2014).
pubmed: 24829450
pmcid: 4086120
doi: 10.1093/nar/gku397
Vreven, T. et al. Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark version 5 and Affinity Benchmark version 2. J. Mol. Biol. 427, 3031–3041 (2015).
pubmed: 26231283
pmcid: 4677049
doi: 10.1016/j.jmb.2015.07.016
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).
pubmed: 24214988
doi: 10.1093/nar/gkt1043
Kingma, D. & Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (eds Bengio, Y. & LeCun, Y.) (International Conference on Learning Representations, 2015).
Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation Vol. 16 (eds Keeton, K. & Roscoe, T.) 265–283 (Association for Computer Machinery, 2016).
Svoboda, J., Masci, J. & Bronstein, M. M. Palmprint recognition via discriminative index learning. In Proc. 2016 23rd International Conference on Pattern Recognition (ICPR) (eds Bayro, E., Medioni, G. & Sanniti di Baja, G.) 4232–4237 (IEEE, 2016); https://doi.org/10.1109/ICPR.2016.7900298 .
Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for 3D data processing. Preprint at arXiv https://doi.org/10.48550/ARXIV.1801.09847 (2018).
Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinform. 23, 566–579 (1995).
doi: 10.1002/prot.340230412
Zhou, J. & Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence–structure relationships. Protein Sci. 24, 508–524 (2015).
pubmed: 25420575
doi: 10.1002/pro.2610
Duhovny, D., Nussinov, R. & Wolfson, H. J. in Algorithms in Bioinformatics (eds Guigó, R. & Gusfield, D.) 185–200 (Springer, 2002).
Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins Struct. Funct. Bioinform. 52, 80–87 (2003).
doi: 10.1002/prot.10389
Cox, M. A. A. & Cox, T. F. in Handbook of Data Visualization (eds Chen, C. et al.) 315–347 (Springer, 2008); https://doi.org/10.1007/978-3-540-33037-0_14 .
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
pubmed: 10592235
pmcid: 102472
doi: 10.1093/nar/28.1.235
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371
doi: 10.1093/nar/gkab1061
Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).
pubmed: 17406305
doi: 10.1038/nprot.2006.94
Liu, C. et al. Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol. Med. Rep. 15, 1063–1070 (2017).
pubmed: 28075442
pmcid: 5367331
doi: 10.3892/mmr.2017.6102
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
pubmed: 20124692
pmcid: 2815665
doi: 10.1107/S0907444909047337
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27754618
doi: 10.1016/S0076-6879(97)76066-X
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M, A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of ıt Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Afonine, P. V. et al. Real-space refinement in ıt PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in ıt Phenix. Acta Crystallogr. D 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774
doi: 10.1002/pro.3235