De novo design of protein interactions with learned surface fingerprints.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
May 2023
Historique:
received: 16 06 2022
accepted: 21 03 2023
medline: 5 5 2023
pubmed: 27 4 2023
entrez: 26 4 2023
Statut: ppublish

Résumé

Physical interactions between proteins are essential for most biological processes governing life

Identifiants

pubmed: 37100904
doi: 10.1038/s41586-023-05993-x
pii: 10.1038/s41586-023-05993-x
pmc: PMC10131520
doi:

Substances chimiques

Proteins 0
spike protein, SARS-CoV-2 0
CTLA4 protein, human 0
CD274 protein, human 0
PDCD1 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

176-184

Informations de copyright

© 2023. The Author(s).

Références

Janin, J., Bahadur, R. P. & Chakrabarti, P. Protein–protein interaction and quaternary structure. Q. Rev. Biophys. 41, 133–180 (2008).
pubmed: 18812015 doi: 10.1017/S0033583508004708
Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426–431 (2020).
pubmed: 32907861 pmcid: 7857403 doi: 10.1126/science.abd9909
Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, eaay5051 (2020).
pubmed: 32409444 pmcid: 7391827 doi: 10.1126/science.aay5051
Silva, D.-A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).
pubmed: 30626941 pmcid: 6521699 doi: 10.1038/s41586-018-0830-7
Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431 (2019).
pubmed: 30849373 pmcid: 6424820 doi: 10.1016/j.cell.2019.01.046
Fleishman, S. J. et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332, 816–821 (2011).
pubmed: 21566186 pmcid: 3164876 doi: 10.1126/science.1202617
Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).
pubmed: 32015549 doi: 10.1038/s41587-019-0403-9
Cao, L. et al. Design of protein binding proteins from target structure alone. Nature 605, 551–560 (2022).
Marchand, A., Van Hall-Beauvais, A. K. & Correia, B. E. Computational design of novel protein–protein interactions—an overview on methodological approaches and applications. Curr. Opin. Struct. Biol. 74, 102370 (2022).
pubmed: 35405427 doi: 10.1016/j.sbi.2022.102370
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).
pubmed: 31819266 doi: 10.1038/s41592-019-0666-6
DeGrado, W. F., Wasserman, Z. R. & Lear, J. D. Protein design, a minimalist approach. Science 243, 622–628 (1989).
pubmed: 2464850 doi: 10.1126/science.2464850
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Foight, G. W. et al. Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat. Biotechnol. 37, 1209–1216 (2019).
pubmed: 31501561 pmcid: 6776690 doi: 10.1038/s41587-019-0242-8
Dang, L. T. et al. Receptor subtype discrimination using extensive shape complementary designed interfaces. Nat. Struct. Mol. Biol. 26, 407–414 (2019).
pubmed: 31086346 pmcid: 6582999 doi: 10.1038/s41594-019-0224-z
Chothia, C. & Janin, J. Principles of protein–protein recognition. Nature 256, 705–708 (1975).
pubmed: 1153006 doi: 10.1038/256705a0
Conte, L. L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).
Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).
pubmed: 7529940 doi: 10.1126/science.7529940
Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins Struct. Funct. Genet. 47, 334–343 (2002).
pubmed: 11948787 doi: 10.1002/prot.10085
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. & Shah, R. Signature verification using a ‘Siamese’ time delay neural network. In Proc. 6th International Conference on Neural Information Processing Systems (eds Cowan, J. D., Tesauro, G. & Alspector, J.) 737–744 (Morgan Kaufmann, 1994).
Silva, D.-A., Correia, B. E. & Procko, E. Motif-Driven Design of Protein–Protein Interfaces. In Methods in Molecular Biology Proteins vol. 1414 (ed. Stoddard, L.) 285–304 (Humana New York, 2016).
Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).
pubmed: 20826338 doi: 10.1016/j.str.2010.06.010
Stranges, P. B. & Kuhlman, B. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci. Publ. Protein Soc. 22, 74–82 (2013).
doi: 10.1002/pro.2187
Pierce, B. G., Hourai, Y. & Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6, e24657 (2011).
pubmed: 21949741 pmcid: 3176283 doi: 10.1371/journal.pone.0024657
Pierce, B. & Weng, Z. A combination of rescoring and refinement significantly improves protein docking performance. Proteins Struct. Funct. Bioinform. 72, 270–279 (2008).
doi: 10.1002/prot.21920
Lensink, M. F., Velankar, S. & Wodak, S. J. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins Struct. Funct. Bioinform. 85, 359–377 (2017).
doi: 10.1002/prot.25215
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J. & Mumey, B. Antigen–antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. Biochim. Biophys. Acta 1824, 520–532 (2012).
pubmed: 22246133 pmcid: 3443979 doi: 10.1016/j.bbapap.2011.12.007
Fenwick, C. et al. A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Rep. 37, 109814 (2021).
pubmed: 34599871 pmcid: 8452523 doi: 10.1016/j.celrep.2021.109814
Francisco, L. M., Sage, P. T. & Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010).
pubmed: 20636820 pmcid: 2919275 doi: 10.1111/j.1600-065X.2010.00923.x
Zak, K. M. et al. Structural biology of the immune checkpoint receptor PD-1 and Its ligands PD-L1/PD-L2. Structure 25, 1163–1174 (2017).
pubmed: 28768162 doi: 10.1016/j.str.2017.06.011
Coventry, B. & Baker, D. Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds. PLoS Comput. Biol. 17, e1008061 (2021).
pubmed: 33684097 pmcid: 7971855 doi: 10.1371/journal.pcbi.1008061
Rocklin Gabriel, J. et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357, 168–175 (2017).
pubmed: 28706065 pmcid: 5568797 doi: 10.1126/science.aan0693
Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).
pubmed: 27626386 pmcid: 5161715 doi: 10.1038/nature19791
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).
pubmed: 22658127 pmcid: 3544539 doi: 10.1056/NEJMoa1200690
Maute, R. L. et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl Acad. Sci. USA 112, E6506–E6514 (2015).
pubmed: 26604307 pmcid: 4664306 doi: 10.1073/pnas.1519623112
Nooren, I. M. A. & Thornton, J. M. Diversity of protein-protein interactions. EMBO J. 22, 3486–3492 (2003).
pubmed: 12853464 pmcid: 165629 doi: 10.1093/emboj/cdg359
Fleishman, S. J. & Baker, D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 149, 262–273 (2012).
pubmed: 22500796 doi: 10.1016/j.cell.2012.03.016
Smith, M. C. & Gestwicki, J. E. Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev. Mol. Med. 14, e16 (2012).
pubmed: 22831787 pmcid: 3591511 doi: 10.1017/erm.2012.10
Procko, E. et al. Computational design of a protein-based enzyme inhibitor. J. Mol. Biol. 425, 3563–3575 (2013).
pubmed: 23827138 doi: 10.1016/j.jmb.2013.06.035
Jha, R. K. et al. Computational design of a PAK1 binding protein. J. Mol. Biol. 400, 257–270 (2010).
pubmed: 20460129 pmcid: 2903434 doi: 10.1016/j.jmb.2010.05.006
Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).
pubmed: 34853475 pmcid: 9293396 doi: 10.1038/s41586-021-04184-w
Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).
pubmed: 35862514 pmcid: 9621694 doi: 10.1126/science.abn2100
Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).
pubmed: 25301850 doi: 10.1093/bioinformatics/btu626
Sanner, M. F., Olson, A. J. & Spehner, J.-C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).
pubmed: 8906967 doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
Zhou, Q. PyMesh—Geometry Processing Library for Python (2019).
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
doi: 10.1007/BF01386390
Ingwer B. & Patrick J. F. Groenen. Modern Multidimensional Scaling Theory and Applications (Springer, 2005).
Pedregosa, F. et al. Scikit-Learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Koenderink, J. J. & van Doorn, A. J. Surface shape and curvature scales. Image Vis. Comput. 10, 557–564 (1992).
doi: 10.1016/0262-8856(92)90076-F
Yin, S., Proctor, E. A., Lugovskoy, A. A. & Dokholyan, N. V. Fast screening of protein surfaces using geometric invariant fingerprints. Proc. Natl Acad. Sci. USA 106, 16622–16626 (2009).
pubmed: 19805347 pmcid: 2757799 doi: 10.1073/pnas.0906146106
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
pubmed: 7108955 doi: 10.1016/0022-2836(82)90515-0
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357 doi: 10.1002/pro.3280
Morozov, A. V. & Kortemme, T. in Advances in Protein Chemistry Vol. 72, 1–38 (Academic, 2005).
Monti, F. et al. Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Chelapa, R., Hoogs, A. & Zhang Z) 5425–5434 (IEEE, 2017).
Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O. & Gursoy, A. PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Res. 42, W285–W289 (2014).
pubmed: 24829450 pmcid: 4086120 doi: 10.1093/nar/gku397
Vreven, T. et al. Updates to the Integrated Protein–Protein Interaction Benchmarks: Docking Benchmark version 5 and Affinity Benchmark version 2. J. Mol. Biol. 427, 3031–3041 (2015).
pubmed: 26231283 pmcid: 4677049 doi: 10.1016/j.jmb.2015.07.016
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).
pubmed: 24214988 doi: 10.1093/nar/gkt1043
Kingma, D. & Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (eds Bengio, Y. & LeCun, Y.) (International Conference on Learning Representations, 2015).
Abadi, M. et al. Tensorflow: a system for large-scale machine learning. In Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation Vol. 16 (eds Keeton, K. & Roscoe, T.) 265–283 (Association for Computer Machinery, 2016).
Svoboda, J., Masci, J. & Bronstein, M. M. Palmprint recognition via discriminative index learning. In Proc. 2016 23rd International Conference on Pattern Recognition (ICPR) (eds Bayro, E., Medioni, G. & Sanniti di Baja, G.) 4232–4237 (IEEE, 2016); https://doi.org/10.1109/ICPR.2016.7900298 .
Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for 3D data processing. Preprint at arXiv https://doi.org/10.48550/ARXIV.1801.09847 (2018).
Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinform. 23, 566–579 (1995).
doi: 10.1002/prot.340230412
Zhou, J. & Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence–structure relationships. Protein Sci. 24, 508–524 (2015).
pubmed: 25420575 doi: 10.1002/pro.2610
Duhovny, D., Nussinov, R. & Wolfson, H. J. in Algorithms in Bioinformatics (eds Guigó, R. & Gusfield, D.) 185–200 (Springer, 2002).
Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins Struct. Funct. Bioinform. 52, 80–87 (2003).
doi: 10.1002/prot.10389
Cox, M. A. A. & Cox, T. F. in Handbook of Data Visualization (eds Chen, C. et al.) 315–347 (Springer, 2008); https://doi.org/10.1007/978-3-540-33037-0_14 .
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
pubmed: 10592235 pmcid: 102472 doi: 10.1093/nar/28.1.235
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371 doi: 10.1093/nar/gkab1061
Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).
pubmed: 17406305 doi: 10.1038/nprot.2006.94
Liu, C. et al. Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol. Med. Rep. 15, 1063–1070 (2017).
pubmed: 28075442 pmcid: 5367331 doi: 10.3892/mmr.2017.6102
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27754618 doi: 10.1016/S0076-6879(97)76066-X
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M, A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of ıt Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Afonine, P. V. et al. Real-space refinement in ıt PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in ıt Phenix. Acta Crystallogr. D 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235

Auteurs

Pablo Gainza (P)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Monte Rosa Therapeutics, Basel, Switzerland.

Sarah Wehrle (S)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Alexandra Van Hall-Beauvais (A)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Anthony Marchand (A)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Andreas Scheck (A)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Zander Harteveld (Z)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Stephen Buckley (S)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Dongchun Ni (D)

Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

Shuguang Tan (S)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Freyr Sverrisson (F)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Casper Goverde (C)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Priscilla Turelli (P)

Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Charlène Raclot (C)

Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Alexandra Teslenko (A)

Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Martin Pacesa (M)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Stéphane Rosset (S)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Sandrine Georgeon (S)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Jane Marsden (J)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.

Aaron Petruzzella (A)

Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Kefang Liu (K)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Zepeng Xu (Z)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Yan Chai (Y)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Pu Han (P)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

George F Gao (GF)

CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Elisa Oricchio (E)

Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Beat Fierz (B)

Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Didier Trono (D)

Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Henning Stahlberg (H)

Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

Michael Bronstein (M)

Department of Computer Science, University of Oxford, Oxford, UK. michael.bronstein@cs.ox.ac.uk.

Bruno E Correia (BE)

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. bruno.correia@epfl.ch.
Swiss Institute of Bioinformatics, Lausanne, Switzerland. bruno.correia@epfl.ch.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH