Studying structural and rheological properties of alginate-whey protein isolate cold-set hybrid emulgels at various pH levels.
emulgels
fat replacer
rheological properties
whey protein isolate
Journal
Journal of texture studies
ISSN: 1745-4603
Titre abrégé: J Texture Stud
Pays: England
ID NLM: 0252052
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
revised:
26
03
2023
received:
29
12
2022
accepted:
29
03
2023
medline:
23
10
2023
pubmed:
27
4
2023
entrez:
27
4
2023
Statut:
ppublish
Résumé
Effects of different pH values (4-7) and whey protein isolate (WPI) concentrations (0.5-1.5%) were evaluated on physical, mechanical, and rheological properties of cold-set alginate-based soybean oil hybrid emulgels. The pH value changes were more effective than WPI concentration changes on emulgel properties. According to syneresis and texture profile analysis results, 1% WPI was selected as the optimum concentration. The XRD analysis showed that calcium alginate (CA) emulgel at pH 6 had a different peak at 2θ of 14.8°, likely indicating the highest amount of ion-bridging and maximum number of junction zones. The homogeneity of CA and CA + WPI emulgels (determined by image entropy analysis) decreased by pH reduction from 7 to 4, which can be related to acid-induced intermolecular interactions between alginate chains. The rheological properties of CA and CA + WPI emulgels revealed predominant elastic character (G' > G'') at different pH values. Creep test results showed that the relative recovery of emulgel prepared at pH 7 and 5 was 18.10 and 63.83%, respectively, suggesting pH reduction contributed to increase in the elastic component of material. The findings of this study can be applied for developing structured cold-set emulgels as solid fat replacers in meat and dairy products.
Substances chimiques
Whey Proteins
0
Gels
0
Alginates
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
720-735Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Kashani, E., Fazljou, S. M. B., Torbati, M., & Akbarzadeh, A. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering, 14, 1-22. https://doi.org/10.1186/s13036-020-0227-7
Afshari-Jouybari, H., & Farahnaky, A. (2011). Evaluation of Photoshop software potential for food colorimetry. Journal of Food Engineering, 106, 170-175. https://doi.org/10.1016/j.jfoodeng.2011.02.034
Akoh, C. C. (1998). Fat replacers. Food Technology, 52, 47-53.
Benli, B. (2013). Effect of borax addition on the structural modification of bentonite in biodegradable alginate-based bio composites. Journal of Applied Polymer Science, 128, 4172-4180. https://doi.org/10.1002/app.38609
Cuomo, F., Cofelice, M., & Lopez, F. (2019). Rheological characterization of hydrogels from alginate-based Nano dispersion. Polymers, 11, 259. https://doi.org/10.3390/polym11020259
De Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9, 340-349. https://doi.org/10.1016/j.cocis.2004.09.006
de Souza Paglarini, C., de Figueiredo Furtado, G., Honório, A. R., Mokarzel, L., da Silva Vidal, V. A., Ribeiro, A. P. B., … Pollonio, M. A. R. (2019). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20, 100105. https://doi.org/10.1016/j.foostr.2019.100105
Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids, 28, 224-241. https://doi.org/10.1016/j.foodhyd.2011.12.017
Erben, M., Pérez, A. A., Osella, C. A., Alvarez, V. A., & Santiago, L. G. (2019). Impact of gum arabic and sodium alginate and their interactions with whey protein aggregates on bio-based films characteristics. International Journal of Biological Macromolecules, 125, 999-1007. https://doi.org/10.1016/j.ijbiomac.2018.12.131
Feng, W., Yue, C., Ni, Y., & Liang, L. (2018). Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol. Food Research International, 108, 161-171. https://doi.org/10.1016/j.foodres.2018.03.035
Fioramonti, S. A., Martinez, M. J., Pilosof, A. M., Rubiolo, A. C., & Santiago, L. G. (2015). Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration. Food Hydrocolloids, 43, 8-17. https://doi.org/10.1016/j.foodhyd.2014.04.026
Fioramonti, S. A., Perez, A. A., Aríngoli, E. E., Rubiolo, A. C., & Santiago, L. G. (2014). Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocolloids, 35, 129-136. https://doi.org/10.1016/j.foodhyd.2013.05.001
Gahruie, H. H., Eskandari, M. H., Van der Meeren, P., & Hosseini, S. M. H. (2019). Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate Polymers, 219, 155-161. https://doi.org/10.1016/j.carbpol.2019.05.024
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-A review. Journal of Controlled Release, 114, 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
Gupta, P., & Nayak, K. K. (2016). Optimization of keratin/alginate scaffold using RSM and its characterization for tissue engineering. International Journal of Biological Macromolecules, 85, 141-149. https://doi.org/10.1016/j.ijbiomac.2015.12.010
Hong, G. P., & Chin, K. B. (2010). Evaluation of sodium alginate and glucono-δ-lactone levels on the cold-set gelation of porcine myofibrillar proteins at different salt concentrations. Meat Science, 85, 201-209. https://doi.org/10.1016/j.meatsci.2009.12.026
Hosseini, S. M. H., Emam-Djomeh, Z., Razavi, S. H., Moosavi-Movahedi, A. A., Saboury, A. A., Atri, M. S., & Van der Meeren, P. (2013). β-Lactoglobulin-sodium alginate interaction as affected by polysaccharide depolymerization using high intensity ultrasound. Food Hydrocolloids, 32, 235-244. https://doi.org/10.1016/j.jconrel.2006.04.017
Jiang, Y., Pang, X., Deng, Y., Sun, X., Zhao, X., Xu, P., … Li, Z. (2019). An alginate hybrid Sponge with high thermal stability: Its flame retardant properties and mechanism. Polymers, 11, 1973. https://doi.org/10.3390/polym11121973
Keeton, J. T. (1994). Low-fat meat products-Technological problems with processing. Meat Science, 36, 261-276. https://doi.org/10.1016/0309-1740(94)90045-0
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
Leon, A. M., Medina, W. T., Park, D. J., & Aguilera, J. M. (2018). Properties of microparticles from a whey protein isolate/alginate emulsion gel. Food Science and Technology International, 24, 414-423. https://doi.org/10.1177/1082013218762210
Lin, D., Kelly, A. L., Maidannyk, V., & Miao, S. (2021). Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. Food Hydrocolloids, 110, 106165. https://doi.org/10.1016/j.foodhyd.2020.106165
Ma, L., Wan, Z., & Yang, X. (2017). Multiple water-in-oil-in-water emulsion gels based on self-assembled saponin fibrillar network for photosensitive cargo protection. Journal of Agricultural and Food Chemistry, 65, 9735-9743. https://doi.org/10.1021/acs.jafc.7b04042
Mai, T. H. A., Tran, V. N., & Le, V. V. M. (2013). Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochemical Engineering Journal, 74, 81-87. https://doi.org/10.1016/j.bej.2013.03.003
Mandala, I. G., Savvas, T. P., & Kostaropoulos, A. E. (2004). Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Journal of Food Engineering, 64, 335-342. https://doi.org/10.1016/j.jfoodeng.2003.10.018
Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46, 365-371. https://doi.org/10.1016/S0144-8617(00)00337-4
Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food & Function, 9, 758-773. https://doi.org/10.1039/c7fo01641g
Park, H. Y., Choi, C. R., Kim, J. H., & Kim, W. S. (1998). Effect of pH on drug release from polysaccharide tablets. Drug Delivery, 5, 13-18. https://doi.org/10.3109/10717549809052022
Patel, A. R., Dumlu, P., Vermeir, L., Lewille, B., Lesaffer, A., & Dewettinck, K. (2015). Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocolloids, 46, 84-92. https://doi.org/10.1016/j.foodhyd.2014.12.029
Patino, J. M. R., & Pilosof, A. M. (2011). Protein-polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 25, 1925-1937. https://doi.org/10.1016/j.foodhyd.2011.02.023
Peng, X., & Yao, Y. (2017). Carbohydrates as fat replacers. Annual Review of Food Science and Technology, 8, 331-351. https://doi.org/10.1146/annurev-food-030216-030034
Puguan, J. M. C., Yu, X., & Kim, H. (2014). Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods. Journal of Colloid and Interface Science, 432, 109-116. https://doi.org/10.1016/j.jcis.2014.06.048
Rahiminezhad, Z., Gahruie, H. H., Esteghlal, S., Mesbahi, G. R., Golmakani, M. T., & Hosseini, S. M. H. (2020). Oxidative stability of linseed oil nano-emulsions filled in calcium alginate hydrogels. LWT, 127, 109392. https://doi.org/10.1016/j.lwt.2020.109392
Ramdhan, T., Ching, S. H., Prakash, S., & Bhandari, B. (2019). Time dependent gelling properties of cuboid alginate gels made by external gelation method: Effects of alginate-CaCl2 solution ratios and pH. Food Hydrocolloids, 90, 232-240. https://doi.org/10.1016/j.foodhyd.2018.12.022
Schmitt, C., Aberkane, L., & Sanchez, C. (2009). Protein-polysaccharide complexes and coacervates. In G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd ed., pp. 420-476). FL: CRC Press.
Schuster, E., Eckardt, J., Hermansson, A. M., Larsson, A., Lorén, N., Altskär, A., & Ström, A. (2014). Microstructural, mechanical and mass transport properties of isotropic and capillary alginate gels. Soft Matter, 10, 357-366. https://doi.org/10.1039/C3SM52285G
Shental-Bechor, D., & Levy, Y. (2008). Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proceedings of the National Academy of Sciences of the United States of America, 105, 8256-8261. https://doi.org/10.1073/pnas.0801340105
Taherian, A. R., Britten, M., Sabik, H., & Fustier, P. (2011). Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids, 25, 868-878. https://doi.org/10.1016/j.foodhyd.2010.08.007
Teye, M., Teye, G. A., & Odoi, F. N. A. (2012). The potential of soya oil and egg-yolk as sources of fat in beef sausages. Scientific Journal of Animal Science, 1, 81-89.
Verma, S., & Hussain, M. E. (2017). Obesity and diabetes: An update. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, 73-79. https://doi.org/10.1016/j.dsx.2016.06.017
Yang, J., Lu, S., Pan, L., Luo, Q., Song, L., Wu, L., & Yu, J. (2017). Effect of epoxidized soybean oil grafted poly (12-hydroxy stearate) on mechanical and thermal properties of microcrystalline cellulose fibers/polypropylene composites. Polymer Bulletin, 74, 911-930. https://doi.org/10.1007/s00289-016-1753-9