CRISPR/Cas9 Gene Editing System Can Alter Gene Expression and Induce DNA Damage Accumulation.
CRISPR/Cas9
DNA damage
gene editing
transcriptome
Journal
Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097
Informations de publication
Date de publication:
27 03 2023
27 03 2023
Historique:
received:
16
02
2023
revised:
08
03
2023
accepted:
24
03
2023
medline:
1
5
2023
pubmed:
28
4
2023
entrez:
28
4
2023
Statut:
epublish
Résumé
Clustered regularly interspaced short palindromic repeats (CRISPR) and the associated protein (Cas) gene editing can induce P53 activation, large genome fragment deletions, and chromosomal structural variations. Here, gene expression was detected in host cells using transcriptome sequencing following CRISPR/Cas9 gene editing. We found that the gene editing reshaped the gene expression, and the number of differentially expressed genes was correlated with the gene editing efficiency. Moreover, we found that alternative splicing occurred at random sites and that targeting a single site for gene editing may not result in the formation of fusion genes. Further, gene ontology and KEGG enrichment analysis showed that gene editing altered the fundamental biological processes and pathways associated with diseases. Finally, we found that cell growth was not affected; however, the DNA damage response protein-γH2AX-was activated. This study revealed that CRISPR/Cas9 gene editing may induce cancer-related changes and provided basic data for research on the safety risks associated with the use of the CRISPR/Cas9 system.
Identifiants
pubmed: 37107564
pii: genes14040806
doi: 10.3390/genes14040806
pmc: PMC10138046
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Nat Commun. 2021 Aug 13;12(1):4922
pubmed: 34389729
Cell. 2019 Mar 7;176(6):1248-1264
pubmed: 30849371
Cell Biosci. 2020 Mar 10;10:31
pubmed: 32175074
Nat Med. 2018 Jul;24(7):939-946
pubmed: 29892062
Nat Commun. 2022 Feb 2;13(1):627
pubmed: 35110541
N Engl J Med. 2021 Jan 21;384(3):252-260
pubmed: 33283989
Mol Ther. 2021 Feb 3;29(2):571-586
pubmed: 33238136
Nat Commun. 2022 Jun 27;13(1):3685
pubmed: 35760782
Nucleic Acids Res. 2022 Apr 8;50(6):3456-3474
pubmed: 35244719
Int J Biol Sci. 2017 Jul 6;13(7):815-827
pubmed: 28808415
Cell. 2017 Mar 9;168(6):960-976
pubmed: 28283069
Nat Biotechnol. 2022 Dec;40(12):1807-1813
pubmed: 35773341
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Nat Genet. 2021 Jun;53(6):895-905
pubmed: 33846636
Sci Transl Med. 2022 Oct 26;14(668):eabq3010
pubmed: 36288281
Biochem Biophys Res Commun. 2020 Jul 12;528(1):54-61
pubmed: 32460957
Nat Med. 2018 Jul;24(7):927-930
pubmed: 29892067
Nucleic Acids Res. 2011 Nov;39(21):9275-82
pubmed: 21813460
Nat Genet. 2020 Jul;52(7):662-668
pubmed: 32424350
Nat Commun. 2021 Nov 11;12(1):6512
pubmed: 34764240
Nat Commun. 2019 Mar 8;10(1):1136
pubmed: 30850590
Science. 2013 Feb 15;339(6121):823-6
pubmed: 23287722
Nucleic Acids Res. 2021 Sep 7;49(15):8785-8795
pubmed: 34133740
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
J Bacteriol. 1987 Dec;169(12):5429-33
pubmed: 3316184
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
Nucleic Acids Res. 2022 Oct 28;50(19):11128-11137
pubmed: 36243978
Elife. 2013 Jan 29;2:e00471
pubmed: 23386978
Science. 2020 Feb 28;367(6481):
pubmed: 32029687