Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson's disease progression.


Journal

Nature aging
ISSN: 2662-8465
Titre abrégé: Nat Aging
Pays: United States
ID NLM: 101773306

Informations de publication

Date de publication:
03 2021
Historique:
received: 08 10 2020
accepted: 08 02 2021
medline: 1 3 2021
pubmed: 1 3 2021
entrez: 28 4 2023
Statut: ppublish

Résumé

Noncoding RNAs have diagnostic and prognostic importance in Parkinson's disease (PD). We studied circulating small noncoding RNAs (sncRNAs) in two large-scale longitudinal PD cohorts (Parkinson's Progression Markers Initiative (PPMI) and Luxembourg Parkinson's Study (NCER-PD)) and modeled their impact on the transcriptome. Sequencing of sncRNAs in 5,450 blood samples of 1,614 individuals in PPMI yielded 323 billion reads, most of which mapped to microRNAs but covered also other RNA classes such as piwi-interacting RNAs, ribosomal RNAs and small nucleolar RNAs. Dysregulated microRNAs associated with disease and disease progression occur in two distinct waves in the third and seventh decade of life. Originating predominantly from immune cells, they resemble a systemic inflammation response and mitochondrial dysfunction, two hallmarks of PD. Profiling 1,553 samples from 1,024 individuals in the NCER-PD cohort validated biomarkers and main findings by an independent technology. Finally, network analysis of sncRNA and transcriptome sequencing from PPMI identified regulatory modules emerging in patients with progressing PD.

Identifiants

pubmed: 37118411
doi: 10.1038/s43587-021-00042-6
pii: 10.1038/s43587-021-00042-6
doi:

Substances chimiques

RNA, Small Untranslated 0
MicroRNAs 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

309-322

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature.

Références

Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).
doi: 10.1016/S0140-6736(16)31012-1
Deweerdt, S. Parkinson’s disease: 4 big questions. Nature 538, S17 (2016).
pubmed: 27783579 doi: 10.1038/538S17a
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).
pubmed: 25904081 doi: 10.1016/S0140-6736(14)61393-3
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008).
pubmed: 18344392 doi: 10.1136/jnnp.2007.131045
Hamza, T. H. et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010).
pubmed: 20711177 pmcid: 2930111 doi: 10.1038/ng.642
Klemann, C. J. H. M. et al. Integrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Dis. 3, 14 (2017).
pubmed: 28649614 pmcid: 5460267 doi: 10.1038/s41531-017-0015-3
Scherzer, C. R. et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl Acad. Sci. USA 104, 955 (2007).
pubmed: 17215369 doi: 10.1073/pnas.0610204104 pmcid: 1766335
Li, Y. I., Wong, G., Humphrey, J. & Raj, T. Prioritizing Parkinson’s disease genes using population-scale transcriptomic data. Nat. Commun. 10, 994 (2019).
pubmed: 30824768 pmcid: 6397174 doi: 10.1038/s41467-019-08912-9
Wang, Q. et al. The landscape of multiscale transcriptomic networks and key regulators in Parkinson’s disease. Nat. Commun. 10, 5234 (2019).
pubmed: 31748532 pmcid: 6868244 doi: 10.1038/s41467-019-13144-y
Calligaris, R. et al. Blood transcriptomics of drug-naive sporadic Parkinson’s disease patients. BMC Genomics 16, 876 (2015).
pubmed: 26510930 pmcid: 4625854 doi: 10.1186/s12864-015-2058-3
Chen-Plotkin, A. S. Blood transcriptomics for Parkinson disease? Nat. Rev. Neurol. 14, 5–6 (2018).
pubmed: 29192261 doi: 10.1038/nrneurol.2017.166
Wang, C., Chen, L., Yang, Y., Zhang, M. & Wong, G. Identification of potential blood biomarkers for Parkinson’s disease by gene expression and DNA methylation data integration analysis. Clin. Epigenetics 11, 24 (2019).
pubmed: 30744671 pmcid: 6371578 doi: 10.1186/s13148-019-0621-5
Hossein-nezhad, A. et al. Transcriptomic profiling of extracellular RNAs present in cerebrospinal fluid identifies differentially expressed transcripts in Parkinson’s disease. J. Parkinsons Dis. 6, 109–117 (2016).
pubmed: 26889637 pmcid: 4927907 doi: 10.3233/JPD-150737
Marz, M., Ferracin, M. & Klein, C. MicroRNAs as biomarker of Parkinson disease? Neurology 84, 636 (2015).
pubmed: 25596504 doi: 10.1212/WNL.0000000000001275
Leggio, L. et al. microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18122698 (2017).
Starhof, C. et al. The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian syndromes. Mov. Disord. 34, 246–254 (2019).
pubmed: 30557454 doi: 10.1002/mds.27542
Keller, A. et al. Toward the blood-borne miRNome of human diseases. Nat. Methods 8, 841–843 (2011).
pubmed: 21892151 doi: 10.1038/nmeth.1682
Leidinger, P. et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 14, R78 (2013).
pubmed: 23895045 pmcid: 4053778 doi: 10.1186/gb-2013-14-7-r78
Keller, A. et al. Validating Alzheimer’s disease micro RNAs using next-generation sequencing. Alzheimers Dement. 12, 565–576 (2016).
pubmed: 26806387 doi: 10.1016/j.jalz.2015.12.012
Ludwig, N. et al. Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genomics Proteomics Bioinformatics 17, 430–440 (2019).
pubmed: 31809862 pmcid: 6943763 doi: 10.1016/j.gpb.2019.09.004
Fehlmann, T. et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.0001 (2020).
Hipp, G. et al. The Luxembourg Parkinson’s Study: a comprehensive approach for stratification and early diagnosis. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00326 (2018).
Valentine, M. N. Z. et al. Multi-year whole-blood transcriptome data for the study of onset and progression of Parkinson’s disease. Sci. Data 6, 20 (2019).
pubmed: 30952910 pmcid: 6472336 doi: 10.1038/s41597-019-0022-9
Lawton, M. et al. Blood biomarkers with Parkinson’s disease clusters and prognosis: the Oxford discovery cohort. Mov. Disord. 35, 279–287 (2020).
pubmed: 31693246 doi: 10.1002/mds.27888
Marek, K. et al. The Parkinson’s Progression Markers Initiative (PPMI) – establishing a PD biomarker cohort. Ann. Clin. Translat. Neurol. 5, 1460–1477 (2018).
doi: 10.1002/acn3.644
Ludwig, N. et al. Bias in recent miRBase annotations potentially associated with RNA quality issues. Sci. Rep. https://doi.org/10.1038/s41598-017-05070-0 (2017).
Ludwig, N. et al. Small ncRNA-seq results of human tissues: variations depending on sample integrity. Clin. Chem. 64, 1074–1084 (2018).
pubmed: 29691221 doi: 10.1373/clinchem.2017.285767
Fehlmann, T. et al. Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs. Nucleic Acids Res. 45, 8731–8744 (2017).
pubmed: 28911107 pmcid: 5587802 doi: 10.1093/nar/gkx595
Amand, J., Fehlmann, T., Backes, C. & Keller, A. DynaVenn: web-based computation of the most significant overlap between ordered sets. BMC Bioinformatics 20, 743 (2019).
pubmed: 31888436 pmcid: 6937821 doi: 10.1186/s12859-019-3320-5
Kern, F. et al. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res. 48, W521–W528 (2020).
pubmed: 32374865 pmcid: 7319446 doi: 10.1093/nar/gkaa309
Antony, P. M. A., Diederich, N. J., Krüger, R. & Balling, R. The hallmarks of Parkinson’s disease. FEBS J. 280, 5981–5993 (2013).
pubmed: 23663200 doi: 10.1111/febs.12335
Huang, Z. et al. HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47, D1013–D1017 (2019).
pubmed: 30364956 doi: 10.1093/nar/gky1010
Ding, H. et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat. Disord. 22, 68–73 (2016).
pubmed: 26631952 doi: 10.1016/j.parkreldis.2015.11.014
Liu, X. et al. miRNAs and target genes in the blood as biomarkers for the early diagnosis of Parkinson’s disease. BMC Syst. Biol. 13, 10 (2019).
pubmed: 30665415 pmcid: 6341689 doi: 10.1186/s12918-019-0680-4
Martins, M. et al. Convergence of miRNA expression profiling, α-synuclein interaction and GWAS in Parkinson’s disease. PLoS ONE 6, e25443 (2011).
pubmed: 22003392 pmcid: 3189215 doi: 10.1371/journal.pone.0025443
Caggiu, E. et al. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 13, 1–4 (2018).
pubmed: 30255159 pmcid: 6149197 doi: 10.1016/j.ensci.2018.09.002
Chi, J. et al. Integrated analysis and identification of novel biomarkers in Parkinson’s disease. Front. Aging Neurosci. 10, 178 (2018).
pubmed: 29967579 pmcid: 6016006 doi: 10.3389/fnagi.2018.00178
Ravanidis, S. et al. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann. Clin. Translat. Neurol. 7, 1594–1607 (2020).
doi: 10.1002/acn3.51146
Botta-Orfila, T. et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J. Neurosci. Res. 92, 1071–1077 (2014).
pubmed: 24648008 doi: 10.1002/jnr.23377
Bai, X. et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci. Rep. 7, 5411 (2017).
pubmed: 28710399 pmcid: 5511199 doi: 10.1038/s41598-017-03887-3
Cao, X.-Y. et al. MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci. Lett. 644, 94–99 (2017).
pubmed: 28223160 doi: 10.1016/j.neulet.2017.02.045
Barbagallo, C. et al. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases. Cell. Mol. Neurobiol. https://doi.org/10.1007/s10571-019-00751-y (2019).
Burgos, K. et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9, e94839 (2014).
pubmed: 24797360 pmcid: 4010405 doi: 10.1371/journal.pone.0094839
Paschon, V. et al. Interplay between exosomes, microRNAs and Toll-Like receptors in brain disorders. Mol. Neurobiol. 53, 2016–2028 (2016).
pubmed: 25862375 doi: 10.1007/s12035-015-9142-1
Schlachetzki, J. C. M. et al. A monocyte gene expression signature in the early clinical course of Parkinson’s disease. Sci. Rep. 8, 10757 (2018).
pubmed: 30018301 pmcid: 6050266 doi: 10.1038/s41598-018-28986-7
Nissen, S. K. et al. Alterations in blood monocyte functions in Parkinson’s disease. Mov. Disord. 34, 1711–1721 (2019).
pubmed: 31449711 doi: 10.1002/mds.27815
Ravanidis, S. et al. Circulating brain-enriched microRNAs for detection and discrimination of idiopathic and genetic Parkinson’s disease. Mov. Disord. 35, 457–467 (2020).
pubmed: 31799764 doi: 10.1002/mds.27928
Billingsley, K. J. et al. Mitochondria function associated genes contribute to Parkinson’s disease risk and later age at onset. NPJ Parkinsons Dis. 5, 8 (2019).
pubmed: 31123700 pmcid: 6531455 doi: 10.1038/s41531-019-0080-x
Shamir, R. et al. Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology 89, 1676 (2017).
pubmed: 28916538 pmcid: 5644465 doi: 10.1212/WNL.0000000000004516
Backes, C. et al. MiRCarta: a central repository for collecting miRNA candidates. Nucleic Acids Res. 46, D160–D167 (2018).
pubmed: 29036653 doi: 10.1093/nar/gkx851
Goh, Y. S., Chao, X. Y., Dheen, T. S., Tan, E.-K. & Tay, S. S. Role of microRNAs in Parkinson’s disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20225649 (2019).
Keller, A. et al. miRNAs can be generally associated with human pathologies as exemplified for miR-144*. BMC Med. 12, 224 (2014).
pubmed: 25465851 pmcid: 4268797 doi: 10.1186/s12916-014-0224-0
Fehlmann, T. et al. Common diseases alter the physiological age-related blood microRNA profile. Nat. Commun. 11, 5958 (2020).
pubmed: 33235214 pmcid: 7686493 doi: 10.1038/s41467-020-19665-1
Blauwendraat, C. et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol. Aging 57, 247.e9–247.e13 (2017).
doi: 10.1016/j.neurobiolaging.2017.05.009
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Juzenas, S. et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res. 45, 9290–9301 (2017).
pubmed: 28934507 pmcid: 5766192 doi: 10.1093/nar/gkx706

Auteurs

Fabian Kern (F)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Tobias Fehlmann (T)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Ivo Violich (I)

Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Eric Alsop (E)

Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.

Elizabeth Hutchins (E)

Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.

Mustafa Kahraman (M)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Nadja L Grammes (NL)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Pedro Guimarães (P)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Christina Backes (C)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

Kathleen L Poston (KL)

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Bradford Casey (B)

The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.

Rudi Balling (R)

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

Lars Geffers (L)

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg.

Rejko Krüger (R)

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg.

Douglas Galasko (D)

Department of Neurology, University of California, San Diego, La Jolla, CA, USA.

Brit Mollenhauer (B)

Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
Department of Neurology, Paracelsus-Elena-Klinik, Kassel, Germany.

Eckart Meese (E)

Department of Human Genetics, Saarland University, Homburg, Germany.

Tony Wyss-Coray (T)

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

David W Craig (DW)

Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.

Kendall Van Keuren-Jensen (K)

Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.

Andreas Keller (A)

Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany. andreas.keller@ccb.uni-saarland.de.
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. andreas.keller@ccb.uni-saarland.de.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH